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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 

Technology offer you this synthesis of the 37th Climate Diagnostics and Prediction Workshop.  The 

CDPW brought together over 100 participants to share their research results and perspectives on a broad 

range of climate prediction and monitoring topics.  As in previous years, the CDPW included plenary 

sessions and poster sessions, but this year also featured coordinated activities with a “Drought Task 

Force” organized by the NOAA Climate Program Office and focused on challenges in drought 

monitoring and prediction.  Thus, the CDPW continues to be an important and timely way for the 

climate prediction community to stay connected.   

As is clearly evident in this digest, the climate community continues to make major strides in the 

foundational research necessary to improve understanding and to advance climate prediction and 

monitoring capabilities.  The purpose of this digest is to help keep you informed of these advances  

and to ensure that they are shared with the broader climate community and transitioned into 

operations.  This is especially important as NOAA works to enhance climate services across the 

agency and with external partners.  We hope you find this digest to be useful and stimulating.  And 

please drop me a note if you have suggestions to improve the digest. 

Finally, I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology / NWS, 

for developing the digest concept and for sustaining it year after year.  This partnership between 

OST and CPC is an essential element of NOAA climate services. 

Wayne Higgins 
Wayne Higgins 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

NOAA's 37th Climate Diagnostics and Prediction Workshop was held in Fort Collins, Colorado, 
on 22-25 October 2012. It was hosted by the Colorado State University (CSU) and the Cooperative 
Institute for Research in the Atmosphere (CIRA); and co-sponsored by the Climate Prediction 
Center (CPC) of the National Centers for Environmental Prediction and the National Climatic Data 
Center (NCDC). The American Meteorological Society was a cooperating sponsor. 

The workshop addressed the status and prospects for advancing climate prediction, monitoring, 
and diagnostics, with emphasis on five major themes: 

1. Improving climate prediction tools and techniques through dynamical and statistical models 
and methods, forecaster practices and protocols, data and model improvements, and scientific 
concepts. 

2. Prospects for improved understanding, prediction, and simulation of intra-seasonal, seasonal, 
and inter-annual climate variability, including the extratropical annular modes, 
stratosphere/troposphere coupling, tropical-extratropical interactions, land-surface forcing, 
etc. 

3. Climate variability and prediction in relation to the hydrologic cycle and in particular 
Western water resources. 

4. Prediction and attribution of recent high impact weather and climate events. 
5. Improving climate services through the application of new technologies, including GIS, 

statistical tools, and software development practices. 

This Digest is a collection of extended summaries of the presentations contributed by 
participants. The workshop is continuing to grow and expect to provide a stimulus for further 
improvements in climate monitoring, diagnostics, prediction, applications and services. 



1.  ANNUAL REVIEW OF WEATHER & CLIMATE 

AND CLIMATE OPERATION 
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US Climate Review of 2012: The Hot and Dry 

Melissa Ou 

Climate Prediction Center, NCEP/NWS/NOAA, MD 

1. Introduction 

The climate across the Contiguous U.S. (CONUS) was dominated by above normal temperatures during 
2012, even record setting temperatures in many locations. Northern areas of the CONUS experienced 
anomalously low snow cover this winter and widespread hot and dry conditions across the CONUS during the 
summer. This report discusses some of these major climatic events, their impacts, and some attribution studies 
up to the end of October 2012. 

2. Discussion 

a. A warm winter and spring 

The majority of 2012 was 
above normal for most of the 
CONUS, until the end of 
summer (August and 
September) when anomalous 
warm focused in the western 
half of the CONUS. January 
through August was the 
warmest first eight months of 
any year on record for the 
CONUS. The largest 
temperature departures for Jan-
Mar 2012 occurred across the 
Midwest and New England. 
Much of the west coast was 
below normal. 

The long-term time series of 
Jan-March (JFM) averaged 
temperatures (from 1895-2012) 
showed that this past Jan-Mar 
had the highest CONUS temperature in the long-term time series. The value was about 43 degrees Fahrenheit, 
which is about 6 degrees above the long-term average. 

A comparison of last year’s Jan-Mar averaged CONUS temperatures and anomalies to this year’s (Fig. 1) 
shows that this year had a very different pattern than 2011. Last year, a large area of CONUS experienced 
below-average temperatures, whereas this year most of the country saw above-average temperatures. Some 
areas across the Midwest experienced temperature anomalies of 8 degrees (F) above normal (indicated by the 
dark brown shaded areas in Fig. 1). The west coast in both years had below-normal temperatures. In 2012, the 
sea surface temperatures off the west coast were colder than normal, likely keeping temperatures along the 
west coast cool. 

Fig. 1 Jan - Mar averaged temperatures (top row) and anomalies (bottom 
row) for 2011 (left) and 2012 (right). Units in degrees Fahrenheit. 
(Source: Climate Prediction Center’s temperature analyses web 
page). 
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The large-scale winter flow is 
examined to find some features that 
could be attributed to the 
anomalously warm winter 
temperatures. December-February 
(DJF) 500mb heights are used to 
look at the large-scale synoptic 
pattern of last year’s winter 
compared to this year’s winter. The 
DJF season was used because it is 
thought to best capture the cold 
season pattern. According to 
NCDC’s state of the climate, the 
frequent development of cold 
upper-level systems over the west, 
and lack of frequent and persistent 
cold outbreaks in the east led to 
above-normal temperatures over 
much of the country east of the 
Rockies. Fig. 2 shows plots of 
500mb heights and anomalies of 
2011 and 2012. Last year’s plots 
show below-normal heights across 
the eastern US, whereas this year this region had above-normal heights, which may reflect the below average 
frequency of storm systems in the east. This upper-level pattern of ridging across the eastern US is consistent 
with a positive Arctic-Oscillation (AO) pattern during the winter season. 

One impact from the lack of cold outbreaks was anomalously low snow cover across many parts of the 
CONUS. There were fewer days than normal that received snow cover during January and February of this 
year. Large areas across the Northern Plains had 25% fewer days than normal of snow cover than climatology. 
This was the 3rd smallest winter snow cover in the 46-year satellite period, especially in the west. 

b. Impacts from a warm winter and spring 

Some impacts from the warm winter and spring include earlier migration of animals and spring flower 
blooms. Cherry trees in Washington D.C., a popular tourist attraction, bloomed 2 weeks earlier than normal in 
2012. Typically the average peak bloom is near April 4, whereas this year it occurred on March 20. There 
were also large profit losses to ski areas. Many areas did not have enough snow to open, and many of those 
that did open had to close early due to lack of sufficient snow. These warm conditions also led to an early 
start to wildfires across the nation. 

c. A dry, hot summer 

Above-normal temperatures 
continued across most of the 
CONUS during the summer, 
accompanied by persistent dry 
conditions. Plot of June-August 
average temperature departure from 
normal (Fig. 3) shows that the 
summer season was warmer than 
average for a large portion of the 
CONUS, with the exception of the 
Southeast and parts of the 
Northwest. It was the 3rd hottest 

Fig. 2  Dec-Feb averaged 500mb heights (contour) and anomalies 
(shaded) for last year (left) and this year (right). Circled areas in 
red are mentioned in the text. (Source: Climate Prediction 
Center) 

Fig. 3 U.S. Temperature (left) (ºF) and precipitation (right) (percent of 
average precipitation) departures from normal averaged over 
June-August 2012. (Source: NCDC) 
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summer on record according to NCDC. In fact, the average CONUS temperature was more than 2 degrees 
Fahrenheit above the 20th century average. 

Many areas across the US experienced a heat wave in June, with most of them occurring over the 
CONUS. 645 locations experienced record heat, with 410 records broken, and 235 of them tied with previous 
records. Several Midwestern locations saw multiple days of extremes, which are reminiscent of the country's 
legendary "Dust Bowl Days" of the 1930s. 

The long-term timeseries 
of CONUS temperature 
averaged June-August (JJA) 
(Fig. 4) shows that this year’s 
JJA was the second highest 
temperature on record at 
74.28 º F, closely beat by 
1936 at 74.45 º F. The long-
term average is displayed on 
the plot in Fig. 4 as the solid 
gray line. This value is at 
about 72.1, making this 
year’s summer temperature 
about 2 degrees higher than 
the long-term average. 

The average June-August 
(JJA) CONUS precipitation 
was below average at 188 
mm (average is about 210 
mm), although was not as 
record-breaking as the 
temperature. This JJA was 
much drier overall, than the 
previous year. Last year the CONUS on average during JJA received above-normal precipitation (238 mm).  

Even though the overall average CONUS precipitation is not as impressive in terms of the long term 
records, some of the localized precipitation rankings reached record driest. The central part of the CONUS 
had many areas of much-below normal to record driest precipitation. Last year, the most arid areas were 
focused across the south, especially Texas, whereas this year most of the driest areas in JJA were in central 
US. Most of the record breaking dry conditions this year were seen in Nebraska. In contrast, Florida had its 
wettest summer on record this year, partially driven by tropical storm Debby in June and Isaac in August.  

Many parts of the CONUS received below-normal precipitation, especially central CONUS, which 
resulted in large spatial coverage of moderate to exceptional drought. According to the North American 
Drought Monitor (NADM) created July 31, 2012, 62.9% of the nation was in moderate to exceptional drought 
(D1 to D4 NADM categories). The maximum value of coverage of 63.9% occurred on July 24, 2012, which 
was a record spatial coverage in the 13-year of the U.S. Drought monitor (USDM) history (according to the 
NCDC State of the Climate report). 

Unfortunately, despite the fact that the 2012 Atlantic hurricane season was relatively active, the tropical 
storms and hurricanes that made landfall did little to improve drought. A comparison of the drought 
monitoring maps before and after hurricane Isaac made landfall (Fig. 5) delineates the fact that the areas with 
the most severe drought in the Central and Southern Plains and the southeast saw little improvement 
associated with precipitation from Isaac. The track of hurricane Isaac was located too far east to result in 
significant rain supporting drought improvement in these areas. 

Fig. 4 Long-term timeseries of June-August averaged CONUS temperature 
from 1895 - 2012. The highest 2 values are circled in red. (Source: 
National Climatic Data Center) 
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Hurricane Isaac had a 
larger impact to flooding than 
drought. Above average 
streamflow observations in 
the southeast after Isaac made 
landfall highlight this fact. 

d. Examination of 
precipitation and drought 
analogs for July 2012 

I examine some of the 
atmospheric variables for 
precipitation and drought 
analog years to July 2012 to 
attempt to glean some 
information about similarities 
and differences of the 
synoptic pattern associated 
with these analogs.  July 
2012 was selected for 
investigation because July 24, 
2012 broke the 13-year U.S. Drought Monitor (USDM) history for the greatest spatial coverage of areas with 
moderate to exceptional drought (D1 - D4). Based on numerous characteristics regarding the spatial pattern 
and intensity of various climate indicators, the National Climatic Data Center identified 1954 as a good 
analog for July drought, and 1936 as a good July precipitation analog.  Drought in July 1936 was worse than 
1954, but 1954 was the last time such drought occurred and was identified by NCDC to have more similar 
characteristics overall to July 2012.  

First, I will discuss the July 1954 and 2012 drought analogs by looking at synoptic pattern information 
such as 500mb heights as well as the surface air temperature anomalies, and drought blends of these years 
(Fig. 6). The drought blend is a short-term drought indicator, which approximates drought-related impacts 
that respond to precipitation on time scales ranging from a few days to a few months, such as wildfire danger, 
non-irrigated agriculture, topsoil moisture, range and pasture conditions, and unregulated streamflows. 

The 500 mb flow of both July 1954 and 2012 were dominated by an upper-level ridge covering much of 
the CONUS.  However, more of the CONUS was impacted by higher heights in 1954 than 2012. The shaded 
red area, indicating high 500 mb heights in Fig. 6, stretches further west into California during 1954, 
compared to 2012. There were more areas in California in 1954 that experienced above normal temperatures 
than 2012 likely associated with this impact from the upper-level ridging, although it did not seem to lead to 
more areas of drought in California. 

Maps of temperature anomalies (Fig. 6) indicate that the values across central US had similar amplitudes 
between 2012 and 1954, but that there was a wider area of greater temperature anomalies across this area 
during 2012 than 1954. This feature may have supported a more condensed area of severe drought compared 
to 1954 which had more scattered areas with the most severe drought. 

Another synoptic feature difference is that in 1954 the upper-level trough axis was negatively tilted and 
along the east coast, whereas in 2012 it was positively tilted and situated further inland across the east coast 
states (trough axis highlighted in dashed white lines on Fig. 6).  This means that in 1954, there were more 
states in eastern CONUS impacted by the persistent upper-level ridge pattern which may have resulted in less 
precipitation from storms in eastern states than in 2012. This can be indicated by more areas of severe drought 
extending further eastward in 1954 than in 2012. 

Fig. 5 Drought monitoring maps for the week of August 28, 2012, and 
September 4, 2012, which was made before and after landfall of 
Hurricane Isaac, respectively. The track of Isaac is outlined in blue. 
(Source: National Climatic Data Center, created by Climate Portal at 
climate.gov) 
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It should also be noted 
that even though July 1954 
had greater spatial coverage 
of severe to exceptional 
drought (D1-D4) of 53.34% 
compared to 40.28% in 2012, 
July 2012 had slightly greater 
spatial coverage of 
exceptional drought (D4) 
(10.86% in 2012 compared to 
9.69% in 1954).  

In terms of precipitation 
analogs to July 2012, 1936 
was identified as a good 
analog by NCDC.  July 1936 
was the most anomalous, 
historically, in terms of 
extreme drought coverage 
and dry conditions. Fig. 7 
shows 500mb heights, 
surface air temperature 
anomalies, and statewide 
precipitation for July 1936 
and 2012. 

A comparison of the 500 
mb height pattern for July 
1936 and 2012 reveals that in 
1936 the upper-level ridge 
had a larger spatial extent than in 2012. This likely supported the larger magnitude and more widespread 
coverage of positive temperature anomalies over central CONUS. Maps of surface air temperature anomalies 
(center, Fig. 7) indicate greater maximum temperature anomalies of 9 degrees Kelvin during 1936 than 2012, 
which had values of 5 degrees Celsius (2012) (Fahrenheit and Kelvin are identical if comparing degree 
differences). This more widespread anomalous heat and ridging in 1936 was likely the main cause of the 
worst dry conditions in the Midwest historically. The statewide precipitation maps reflect the more 
widespread and severe dry conditions in 1936 than in 2012. Many of the Midwest states had record driest 
categories in 1936, whereas 2012 had no states categorized as record driest. 

It is interesting to note that when applied to the temperature pattern for July 2012, several Julys from the 
1930s (1934, 1935, 1936) are a close match in many regions. 

Record-setting hot, dry, and windy conditions during the last week of June supported widespread fire 
activity, especially in the west. Colorado had multiple days at or above 100 º F (NCDC State of the Climate). 
Many of the fires were caused by lightning, with the hot, dry conditions providing an environment conducive 
for fire initiation and spread. The Waldo Canyon Fire, which started on June 23, 2012, is considered the most 
destructive fire in Colorado state history.  

Increased fire activity burned thousands of acres, leading to hundreds of destroyed homes and thousands 
of people evacuated. Impacts negatively affected tourism, water resources, and energy interests. The primary 
corn and soybean agricultural belt was severely impacted.  According to NYTimes.com, this year’s U.S. corn 
yield is projected to be the lowest since 1995.  Widespread burning also led to devastated crops and livestock 
from the Great Plains to the Midwest, which elevated prices for domestic and international food and animal 
feed.  There was a significant stress on water resources and increased fish kills due to dried up rivers and 
increased water temperatures. 

Fig. 6  500mb heights (left), surface air temperature anomalies in deg Celsius 
(center), and the objective short-term drought blend (right) for 1954 
(bottom) and top (2012). 1954 was an identified drought analog for July 
2012. (Sources: 500mb heights and surface air temperature anomalies 
created using composite web application by Earth System Research 
Laboratory, objective short-term drought blends from Climate Prediction 
Center)
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e. Southwest monsoon report 

This summer’s onset of 
the North American 
(Southwest) monsoon was 
considered normal.  
Typically the monsoon 
season runs from early July 
to end of September. The 
noticeable spike in Tucson’s 
daily dewpoint tracker during 
early July most likely 
indicates the onset of the 
monsoon. 

Overall, precipitation 
was slightly above normal in 
the southwest during the 
monsoon season.  The 
accumulated precipitation 
plots (Fig. 8) indicates that 
the precipitation observations 
(black curve) were greater 
than the climatology (green 
dashed curves) for most of 
the time in most of the zones, 
excluding zone 3, 4, and 6 
(zones 4 and 6 results not 
shown). 

Verification of models’ monsoon related accumulated precipitation forecasts shows that the high 
resolution CFS with April initial conditions and the GSFC with March initial conditions did the best over 
most of the U.S. southwest regions, although typically the GSFC over predicted the amount of accumulated 
precipitation (Fig. 8). The exclusion of this is in zone 8, where the lower resolution CFS with March initial 
conditions performed the best. 

f.  Most recent conditions (September/October 2012) 

During September 2012, most of the west experienced above-normal temperatures. Parts of the northwest, 
upper Midwest, California, and the southeast received below normal precipitation. Much of the northwest and 
the upper Midwest had much below to record driest September precipitation. These warm and dry conditions 
led to another month of above average wildfire in the northwest. Above-normal temperatures and lack of 
sufficient precipitation exacerbated severe drought conditions, especially across the Great Plains.  Another 
impact of this warm, dry environment was enhanced likelihood for wildfires. At Rocky Mountain Park, CO - 
many areas were in very high risk for fires. According to DenverPost.com, the fire started on October 9 and 
increased by 40 acres more of burning on October 20. 

3. Summary 

Much of the CONUS was dominated by above-normal temperatures during the winter and spring. This is 
most likely attributed to more cold upper-level low pressure systems over the west, and less persistent cold 
outbreaks in the east, which is consistent with a positive Arctic-Oscillation (AO) pattern. 

Hot, dry conditions pervaded during the summer over CONUS, which led to widespread severe drought 
over much of the country. Much of this drought occurred over agriculturally significant areas which severely 
impacted many of the country’s most important crops and livestock, especially corn and soybeans and the 

Fig. 7  500mb heights (left), surface air temperature anomalies in deg Celsius 
(center), and the statewide precipitation in inches (right) for 1936 (bottom) 
and top (2012). 1936 was an identified precipitation analog for July 2012. 
(Sources: 500mb heights and surface air temperature anomalies created 
using composite web application by Earth System Research Laboratory, 
objective short-term drought blends from Climate Prediction Center) 
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feed and water used to sustain livestock. Dry conditions supported widespread fires, resulting in the 
destruction of many homes and evacuations. The most recent conditions as of October 2012 were anomalous 
warm and dry conditions across the northwest, upper Midwest, and southeast, and widespread extreme 
drought across the Great Plains. 

 

Fig. 8 Accumulated precipitation forecasts from 
various models for the subregional zones of 2, 
which includes Tucson, as well as 3, 7 and 8. 
(Source: Climate Prediction Center). Bottom map 
shows North American Monsoon sub-regional 
domains. 
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1. Introduction 

 Arctic sea-ice extent reached a new record minimum in 2012. Although shattering the previous record set 
in 2007 was not entirely unforeseen, the swift return to a record year places increased attention on our polar 
regions. This report discusses long-term trends that have led up to today’s conditions of a younger and thinner 
ice cover, and thus an ice cover that is more vulnerable to rapid and record summertime retreat.  

2.  Discussion 

a.  Rapid and record summer retreat, 2012 

One of the simplest methods used to characterize the state of the ice cover is the extent, or the area of 
ocean covered with at least 15% sea ice coverage. Figure 1, displays five months of the annual Arctic sea ice 
cycle and shows that the extent near the onset of the breakup season in 2012 was within two standard 
deviations of the 20-year base period. But as the melt season progressed, the departure from the long-term 
average became increasingly large. The Arctic also experienced a large sea-ice loss event in early August 
before reaching the new record minimum of 3.41 million km2. The new record is approximately 50% below 
the climatological mean minimum extent 
and surpassed the previous record minimum 
values by over 760 thousand km2.  

b.  Substantial losses of multiyear ice 

Another descriptor of the state of the ice 
cover is ice age, which commonly serves as 
a proxy for ice thickness, as the oldest ice is 
in the Arctic basin is often the thickest ice. 
Figure 2 displays a satellite-derived ice age 
product showing the progression of loss of 
the oldest ice types within the Arctic. A 
precipitous decline of multiyear ice is 
notable beginning around the year 2002, and 
has continued over the past decade. 

The distribution of individual ice age 
classes that contributes to the total Arctic ice 
extent (Figure 3) indicates that the oldest ice 
classes are nearly depleted. Because of 

Fig. 1  Arctic sea ice extent progression (Source: NSIDC 
Arctic Sea Ice News and Analysis, 30 September 2012). 
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substantial losses of multiyear ice, the Arctic now contains more thin, first-year ice that is more susceptible to 
export by dynamical forcing and often melts entirely by the end of the summer retreat.  

c. Declining trend in sea ice volume 

The most important variable in describing the state of the sea ice cover on a climate-scale is the ice 
volume. Accurate sea-ice thickness measurements needed for the assessment of ice volume are in short supply, 
but there are a number of different guidance 
products that have been created by the modeling 
community. The output from one of the better-
known models, the Pan-Arctic Ice Ocean 
Modeling and Assimilation System (PIOMAS) 
indicates a declining trend in total ice volume of 
2 – 4 thousand km3 per decade (Figure 4). In the 
most recent years, ice volume has repeatedly 
dipped below the second standard deviation of 
the long-term trend during the melt season. This 
indicates that not only are large losses of sea ice 
occurring in the Arctic, but the Arctic is also 
losing much of its multiyear ice cover.  

d.  The Arctic storm of 2012 

An intense Arctic cyclone that developed in 
northern Siberia may be the cause of the large ice 
loss event, which occurred in early August 

Fig. 3  Changes in multiyear ice extent from 1983 to 
2002. (Source: NSIDC Arctic Sea Ice News and 
Analysis, 2 October 2012). 

a b c

d e f

Fig. 2  Ice age product, courtesy of Fowler, C., Maslanik, J., Tschudi, M., Dept. of Aerospace Engr., Univ. 
of CO, Boulder, CO.  Each panel shows Week 38, corresponding to the typical September minimum ice 
extent for a) 1987, b) 1992, c) 1997, d) 2002, e) 2007, and f) 2012, respectively. The oldest ice 
(5+years) is in red. 
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(Figure 1). After formation, the system ejected 
off the northern coast of Chukotka where it 
quickly intensified to reach a minimum central 
pressure of 964 hPa. The storm reached its 
peak intensity before encountering the ice edge 
located in the north-central Beaufort Sea and 
then began to fill. This event was associated 
with high winds and seas, warmer 
temperatures, and dense cloud cover; processes 
that favor sea-ice destruction. Ground-truth 
verification of the effects that this storm had on 
the state of the ice cover in 2012 are difficult 
quantify due to data scarcity, and the 
contribution of this event to the total ice loss 
will for now be left to speculation. 

3.  Summary 

 Long-term trends of Arctic sea-ice 
thinning preconditioned 2012 for record 
retreat. Much of the oldest ice within the 
Arctic has been lost, which leaves a thinner more mobile ice cover that is subject to rapid export and melt. 
This year, a strong Arctic cyclone impacted the Pacific sector of the Arctic and is a likely candidate for rapid 
sea ice retreat in August but exact effects of the storm have yet to be fully apportioned. 
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1. Introduction 

 The promise of NWS operational climate monitoring and prediction improvement relies on research 
advancement and its successful transition to operation. This summary highlights recent advances identified by 
NWS that can improve weather-climate based services.   

2. Embracing a unified weather-climate modeling strategy 

a. Weather-climate connection in model prediction  

In recent years, the development of seamless prediction has been increasingly praised, which advocates 
the importance of scale interactions between weather and climate.  The NCEP Climate Forecast System (CFS) 
has been built on the operational weather forecast model in order to benefit from the weather model 
improvement.  It is expected that the better the weather statistics is simulated by the model, the more reliable 
the climate prediction would be. 

The significance of model climate 
improvement to advancing the weather 
forecast has not been taken seriously 
until recently, when outstanding 
researches (van den Dool 2012, Fan 
2012) demonstrated that the foremost 
weather forecast error is not due to 
random processes, nor to local factors, 
but rather to large-scale climate biases 
(Fig. 1).  The improved understanding of 
ocean-atmosphere interactions has also 
pointed out that ocean mesoscale eddies 
have a large influence on weather system 
development, and the improved hurricane 
and coastal weather forecasts can be 
achieved using a high-resolution model 
coupled with an eddy resolved ocean 
model.  Evidently, the ocean influence on 
weather forecast should no longer be 
ignored.  As a result, a weather-climate 
two-way truly unified modeling framework is recommended for mutual benefits and acceleration of model 
improvement. 

b. Cloud resolving vs. optimized physics ensemble 

 Due to increases in computational power, weather-climate model development has achieved more 
realistic representations of physical processes, thereby improving prediction skill. 

Global cloud resolving model with modern turbulence parameterization and multi-scale framework 
explicitly formulates mesoscale organization without closure assumptions and triggers.  It simulates 

Fig. 1 The leading two EOF modes of NCEP Climate Forecast 
System (CFS) 975 hPa temperature 5-day forecast error 
(1979-12).  (van den Dool, CFS v2 Evaluation Workshop, 
May 2012) 
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variability more realistically, e.g. the memory of delay in convective response, and shows tremendous 
potential (Randall 2012).  The progress has also been made in developing multiple physics ensemble 
configuration, which incorporates a comprehensive list of alternative parameterization schemes for key 
physical processes.  Since individual physical parameterization scheme has predictive ability depending on 
the weather or climate regime as well as the application, no single scheme performs uniformly well under all 
circumstances.  Figure 2 shows superior skill of multiple physics ensemble over those using a single model 
configuration (Liang 2012). 

3. Accelerating research to operations 

 a.  Prediction of 2010-2011 “double dip” La Nina 

 During 2010-11, the tropical Pacific experienced prolonged cooler-than-normal conditions.  More than 
20 models have been used to make real-time forecasts of equatorial Pacific SST (see details at the IRI website 
http://portal.iri.columbia.edu).  Most models failed to forecast Niño 3.4 SST from June 2010 initial conditions. 
However, one intermediate coupled model, UMD/ESSIC ICM, made a good prediction of the 2011 cold SST 
conditions in the tropical Pacific (Fig. 3). 

To understand why, the relationships 
among various anomaly fields were 
analyzed.  It was found that the 
thermocline feedback, which was 
explicitly represented by the relationship 
between the temperature of subsurface 
water entrained into the mixed layer and 
sea level, was a crucial factor affecting 
the second cooling in 2011.  Sensitivity 
experiments showed that second cooling 
in 2011 would not occur if the intensity 
of thermocline feedback was 
underestimated below certain levels in 
the UMD/ESSIC ICM (Zhang 2012). 

b. Representation of daily mean surface 
air temperature 

Hourly (from minute) observations 
have become popular since the 

Fig. 2  Spatial frequency distribution of correlations (left) and RMS errors (right) between CWRF and 
observed daily mean rainfall variations in summer 1993. Each color line depicts a specific configuration 
in a group of key physical processes.  The ensemble result is the average of all runs with equal (AVE, 
black solid line) or optimal (OPT, black dashed line) weights.  (Liang, Climate Prediction Center 
Seminar, June 2012) 

Fig. 3  UMD/ESSIC ICM performance of Nino 3.4 SST 
predictions (red) in comparison with performances of 
dynamical models (green) and statistical models (yellow).  
The observation is plotted in black.  (Xue, CPC Ocean 
Briefing, 2012)  
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Automated Surface Observing System 
(ASOS) deployed in 1991. There are 
many potential benefits of automated 
measurements that have not been realized. 

Research demonstrated that current 
daily mean surface air temperature (Ta) 
defined by (Tmax+Tmin)/2, which could be 
strongly affected by transient factors (e.g., 
cloud cover etc.), is distinctly different 
from the true daily mean of 24-hour 
average (Fig. 4).  The difference has a 
significant impact on applications, e.g. 
model-data comparisons, trend 
assessment, etc.  It is recommended to 
archive 24-hour average Ta, as well as 
daily maximum and minimum Ta, to 
produce the monthly mean Ta for the 
climate data record (Zeng 2012). 

4.  Climate information and user needs 

An analysis of scenario planning 
approaches employed by national climate 
assessment demonstrated all science 
information can be “actionable” 
(Hartmann 2012).  

The science oriented top-down 
approach, which focuses on 
characterizing uncertainties based on modeling studies, identifies climate system sensitivity to the external 
forces, resulting in different adaptation options for probable futures that are hardly actionable for stakeholders. 

The community bottom-up approach, which puts emphasis on reducing uncertainty through participatory 
processes, shares values, goals and visions and builds preparedness toward one probable future.  The results 
are more relevant to and actionable for stakeholders but less reliable for a range of possibilities. 

More recent advancement in scenario planning calls for embracing uncertainty.  Due to long-term 
uncontrollable external forces and limited predictability, the new development incorporates the advantages of 
above two approaches by using them interconnectively to maintain  a multi-dimensional view, looking for 
common elements on various pathways, meanwhile incrementally implementing options close by to meet 
strategic adaptation challenges. 
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1. Background 

 The first version of the NOAA/NCEP Climate Forecast System coupled model (CFSv1; Saha et al. 2006) 
was used operationally between 2004 and 2011. In 2011 it was supplanted by the second version, CFSv2 
(Saha et al. 2013). Some basic characteristics of the two model versions are shown in Table 1. The CFSv2 
carries several major improvements. Besides changes in the model dynamics and increases in forecast 
resolution and ensemble size, the CO2 concentration in CFSv2 evolves realistically over time, while for 
CFSv1 the CO2 value is fixed at the observed 1988 concentration. Another difference is in the initial 
conditions: In CFSv2, initial conditions come from the Climate Forecast System Reanalysis (CFSR) (Saha et 
al. 2010), while in CFSv1 they come from NCEP/DOE Reanalysis-2 (R-2). It is stated in Saha et al. (2010) 
that the atmospheric analysis, and therefore the initial conditions, based on the CFSR is more realistic than for 
the R-2.  

 CFSv1 CFSv2 
Horizontal & Vertical Resolution T62 (~2), 64 levels T126 (~1), 64 levels 

Atmospheric Model GFS from 2003 GFS from 2009 
Ocean Model MOM3 MOM4 

No. Ensemble Members / Month 15 24 
Source of Initial Condition Data NCEP/DOE Reanalysis Climate Forecast Sys. Reanalysis (CFSR)

Sea Ice Climatology Predicted 
Carbon Dioxide Concentration Setting Fixed at 1988 level Evolving with time 

Table 1  Some basic specifications for CFSv1 and CFSv2 

Given the improvements in CFSv2 compared with CFSv1, one would expect relatively better predictive 
skill in CFSv2. However, a discontinuity at year 1999 in the CFSR, related to a change in the atmospheric 
observing system, induced a change in the characteristics of the SST used for the initial conditions for the 
CFSv2 hindcast integrations beginning that year—especially those in the tropical Pacific (Xue et al. 2011; 
Kumar et al. 2012). Here we compare the skill of predictions of Nino 3.4 SST in the tropical Pacific by 
CFSv2 to those of CFSv1, and examine which features of the skill differences may be related to CFS model 
improvement, or to the 1999 discontinuity in the initial conditions due to the CFSR. 

2.  Results 

Here the skill results include verification measures for deterministic predictions, including trend analysis 
and forecast timing error analysis, and also reliability analysis for the probabilistic aspect of the predictions. 

a. Anomaly correlation and RMSE     

The anomaly correlations between predictions and observations of Nino3.4 SST are shown in the left 
column of Fig. 1 as a function of target month and lead time for CFSv1 and CFSv2. The most noticeable skill 
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difference is found in forecasts for northern 
summer at medium and long lead times, 
where CFSv1 has relatively low skill 
(correlations of 0.5 or lower) while CFSv2 
shows higher skill (0.6 to 0.7). 

These forecasts are for target months 
beyond the northern spring ENSO 
predictability barrier that are made before 
that barrier—the condition known to 
present greatest predictive difficulty. 
However, another skill difference — in the 
opposite direction — is found for 
predictions for times near the mature stage 
of an ENSO episode made from start times 
after the beginning of the episode (e.g., a 
forecast for February made in July). These 
“easier” predictions appear to be made 
better by CFSv1 than CFSv2. Why would 
this be the case for a model that 
outperforms its predecessor in the most 
difficult prediction conditions?  

Figure 2 shows the error of CFSv1 and 
CFSv2 predictions as a function of start 
time for all seasons and leads through the 
28 year hindcast period. A discontinuity in 
the CFSv1 errors appears near 1991, and a 
larger one is seen in CFSv2 errors near 
1999. 

Such discontinuities would be 
expected to degrade all verification 
measures relative to discontinuity-free 
errors, including temporal correlation. The 
source of the 1991 change in CFSv1 error 
has been attributed to a problem in the use 
of bathythermograph (XBT) measurements 
prior to 1991 (Berringer and Xue 2004), and is not examined further here. The CFSv2 error discontinuity, on 
the other hand, is associated with a discontinuity at year 1999 in the CFSR reanalysis data (Saha et al. 2010) 
that induced a change in the characteristics of the SST— particularly in the tropical Pacific (Xue et al. 2011; 
Kumar et al. 2012). This SST change has been attributed to the introduction of the ATOVS1 data in the 
atmospheric assimilation beginning in late 1998 (Zhang et al. 2012), due to forcing from the atmospheric to 
the oceanic aspects of the Reanalysis (Xue et al. 2011). The positive change in central tropical Pacific SST in 
1999 does not coincide with observed SST trends documented in other studies, which have been slightly 
downward (e.g. Kumar et al. 2012; Deser et al. 2010; Kumar et al. 2010; Lyon and DeWitt 2012), and is 
therefore seen as artificial. Such a positive change in tropical Pacific SST behavior around 1999 would be 
important because the SST in that region, besides reflecting the ENSO state in its own right, would affect 
remote teleconnections to seasonal climate. A change in the climatology of tropical Pacific reanalyzed SST in 
1999 implies a change in the initial conditions used to begin a prediction run of CFSv2. Changes beginning in 
1999 in the CFSv2 predictions have indeed been noted in SST and related oceanic and atmospheric fields in 

                                                 
1 ATOVS refers to the Advanced Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder 
radiation data system. 

Fig. 1  Temporal correlation between (a) CFSv1 and (c) CFSv2 
predictions of Nino3.4 SST and verifying observations over 
the 1982-2009 period. The target month is indicated on the 
horizontal axis, and lead time on the vertical axis. A lead 
time of 1 month implies a prediction made at the very 
beginning of the target month using data up to the end of 
the previous month. Right column shows temporal 
correlation for (b) CFSv1 and (d) CFSv2 following 
elimination of discontinuities in the predictions of each 
model by using two separate climatologies (see text). 
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several studies, noted most strongly in the 
general vicinity of the tropical Pacific 
(Wang et al. 2011; Chelliah et al. 2011; 
Ebisuzaki et al. 2011). It will be shown 
below that the signature of the 1999 
discontinuity in the predictions of 
Nino3.4 SST appears in the shortest lead 
time, propagates to longer lead times, and 
exhibits some seasonal dependence.   

To free the evaluation of the effects 
of discontinuities in both CFS versions, 
dual climatologies from which to form 
anomalies are developed (1982-1990 and 
1991-2009 for CFSv1; 1982-1998 and 
1999-2009 for CFSv2), and the 
evaluations are repeated. Results 
following this adjustment (or correction) 
are shown in the right column of Fig. 1. 
Improvements are noted in the cases of 
both model versions, but are more 
substantial in CFSv2 than CFSv1. In 
CFSv2, higher correlations are seen in all 
seasons and leads, but most notably for 
predictions for late northern autumn and 
winter made during summer or later — 
forecasts considered least challenging but 
relatively lacking in skill compared with CFSv1 before the correction. A summary of the correlation 
differences between CFSv2 and CFSv1 before and after the discontinuity corrections for both models is 
shown in Fig. 3 in terms of the difference in squared correlation (where negative signs are retained upon 
squaring).  

The relative superiority of CFSv2 for long lead predictions through the northern spring predictability 
barrier is clear with or without the correction, but with the correction CFSv2 no longer presents a degradation 
for moderate and long lead predictions for northern winter made from earlier within the same ENSO cycle. It 
may be noted, however, that CFSv1 performed about as well for these predictions as CFSv2. Following the 
correction, then, the better performance of CFSv2 applies to most seasons and leads. 

A similar skill comparison is conducted for RMSE using standardized anomalies2, with results shown in 
Fig. 4. The results for RMSE differ noticeably in pattern to those of correlation because biases in both mean 
and in amplitude contribute to RMSE but not to correlation. 

RMSE scores are reduced considerably with the dual climatology correction for both model versions, 
indicating the importance of the sub-period biases that can greatly exacerbate the squares of the largest errors 
in the direction of the bias. Comparing the RMSE for the corrected versions of the two model versions, it is 
seen again that the main difference is a substantial improvement in CFSv2 in the errors of predictions 
traversing the northern spring predictability barrier, particularly for late northern summer target months made 
early in the calendar year. Such predictions are for ENSO conditions generally not yet observed at the time of 
the forecast. 

                                                 
2 Here the RMSE is standardized for each season individually to scale it so that climatology forecasts (zero anomaly) 
would result in the same RMSE-based skill (of zero) for all seasons, and all seasons' RMSE would contribute equally to 
a seasonally combined RMSE. 

Fig. 2  Error (C) in Nino3.4 SST predictions of CFSv1 (top) and 
CFSv2 (bottom) for start times (indicated on horizontal axis) 
over the course of the 1982-2009 period. Errors for 
predictions at all lead times are shown. 
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b. Standard Deviation Ratio 

Figure 5 shows the ratio of the 
interannual standard deviation of the 
model predictions to that of the 
corresponding observations for each 
model version for each target month and 
lead time, both before and after correcting 
biases by forming two climatologies in 
place of a single discontinuous one. 

Ideally the standard deviation ratio 
would be no higher than unity throughout 
all seasons and leads, and lower to the 
extent that predictive skill is imperfect: 
Theoretically, it should be the square root 
of the fraction of observed variance 
explained by the predictions. While the 
correction results mainly in subtle 
changes in the ratios, a noticeable 
decrease toward unity is found in the case 
of CFSv2 for short to intermediate lead 
times for target months in the second half 
of the year. More importantly, the ratio of 
CFSv1 is noted to be too high (>1.5) even 
following the correction for intermediate 
lead predictions for northern spring 
season when the observed standard 
deviation is at its seasonal minimum.  
CFSv2 lacks this weakness and, 
following the bias correction, shows 
ratios fairly close to unity for many 
seasons and leads. In keeping with the 
expected lower skill expected for 
forecasts traversing the northern spring 
predictability barrier, ratios of less than 
unity are noted in CFSv2 for predictions 
for June to October made at medium and 
long leads.  

c. Target month slippage 

“Target month slippage” is a 
systematic error that occurs when 
predictions verify with higher skill for 
target months earlier or later than those 
intended (Tippet et al. 2012; Barnston et 
al. 2012), such as a 4-month lead 
prediction intended for July verifying 
better against observations of May or 
June. Typically slippage occurs with 
predictions late in reproducing observed 
changes, such as onsets or endings of 
ENSO episodes. Slippage cannot be 

Fig. 3 Difference in squared correlation (of predictions vs. 
observations) of CFSv2 and CFSv1 without treatment for 
discontinuities and following treatment using dual 
climatologies for each model version (a and b, respectively). 
Negative sign is retained upon squaring. The target months 
and lead times are as described above in caption of Fig. 1. 

Fig. 4 Root mean squared error of predicted vs. observed 
standardized anomalies of (a) CFSv1 and (c) CFSv2 without 
treatment for discontinuities and following treatment using 
dual climatologies for each model version (b and d, 
respectively). In the absence of any skill, RMSE of 1.41 is 
expected. The target months and lead times are as described 
above in caption of Fig. 1. 
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diagnosed from the usual skill measures, 
which only compare forecasts with the 
verifying observations of the intended 
target time. Although slippage is a 
systematic temporal error, it is 
indistinguishable from a random error 
when forecasts at different leads are 
evaluated independently. It is most likely 
to occur when prediction is most difficult, 
such a prediction made in March for 
targets of July and beyond. Because 
CFSv1 is seen to underperform CFSv2 in 
such predictions crossing the northern 
spring predictability barrier, greater 
slippage might be expected in CFSv1 
than CFSv2.  

Slippage is shown in plots of skill as 
a function of the lag time between the 
measured target period and the intended 
one. To overcome the small sample issue, 
the diagnosis is made for all seasons 
together. To the extent that slippage is 
systematic, it can be corrected using 
statistical methods, such as multiple 
regression, that define optimum shifts of 
the model’s forecasts to targets different 
from those originally intended (Tippett et 
al. 2012). Here we apply such a multiple 
regression-based correction to the 
forecasts of CFSv1 and CFSv2, to 
increase an MSE-based skill metric. 
Figures 6 and 7 show slippage and skill 
results for CFSv1 and CFSv2, 
respectively, before and after the 
correction. 

Slippage is obvious in CFSv1 (top left panel of Fig. 6), and it increases with increasing lead times. The 
MSE-based skill score (bottom left panel) indicates sub-zero skill for long-lead CFSv1 forecasts for northern 
summer. After the statistical correction (right panels) slippage is decreased and the skill of the long-lead 
summer forecasts is improved.  The same diagnostics for CFSv2 (Fig. 7) indicate little original slippage, and 
the correction does little to improve the already good performance. 

d. Trend Bias 

The time-conditional biases indicated in the CFSv1 and CFSv2 predictions discussed earlier (Fig. 2) 
create trend biases in the sense that a linear trend fit to the predictions exhibit slopes that do not appear in 
such a fit to the observations. Each model also exhibits more gradual trends within each of its sub-periods, 
particularly for start months around northern autumn. Figure 8 shows Nino3.4 predictions for the first month 
from each model version, along with the corresponding observations, for start times of 1 August, 1 September 
and 1 October for each year of the hindcast period. As expected from the earlier discussion, CFSv1 exhibits a 
positive bias before 1991 and negative bias from 1991 onward, while CFSv2 shows negative bias before 1999 
and positive bias from 1999 onward. Additionally, the magnitude of the negative biases in CFSv2 appears to 
decrease with time up to 1999, and of positive biases to increase with time from 1999 forward.  

Fig. 5 Ratio of interannual standard deviation of predicted vs. 
observed anomalies of CFSv1 (a) and CFSv2 (c) without 
treatment for discontinuities and following treatment using 
dual climatologies for each model version (b and d, 
respectively). Ideally, the ratio is unity or less. The target 
months and lead times are as described above in caption of 
Fig. 1. 
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At the earliest lead time, predictions 
are expected to be influenced heavily by 
the initial conditions. The systematic 
discrepancies between the short-lead 
predictions and the observations shown in 
Fig. 8 are thus indicative of biases in the 
SST initial conditions, and in this case 
these are most prominent for the August, 
September and October start times. 
Figure 9 shows biases in the slope of the 
least-squares linear trend for predictions 
of CFSv1 and CFSv2 for each target 
month at each lead time. The CFSv2 
positive trend biases for the shortest lead 
predictions of August, September and 
October are noted in the bottom row of 
cells. Figure 9 (right) shows that these 
northern autumn biases amplify as they 
propagate to predictions at later target 
months with increasing lead times.  

The initial condition bias is thus seen 
to be responsible for the initially noted 
lower skills of CFSv2 than CFSv1 for 
predictions made during the less 
challenging seasons of the year if the data 
are not corrected by using two separate 
climatologies. This relatively simple 
correction is sufficient to uncover 
evidence of the substantial general 
improvement in predictive skill of CFSv2 
compared to CFSv1.  

A reason for a remaining gradual 
positive trend in CFSv2 predictions 
relative to observations even after the 
discontinuity correction using dual 
climatologies is not obvious, but may 
reflect a problem of radiation balance in 
the model. This possibility may be an 
issue for consideration in the 
development of the future version of the 
CFS. 

The trend bias in CFSv1 is negative 
for virtually all months and leads, mainly 
because of the discontinuity in 1991 but 
also to some degree because of a gradual 
trend within the sub-periods. In contrast 
to CFSv2, trend biases in CFSv1 do not 
appear at short leads, indicating a likely 
lack of major biases in initial conditions. 
However, CFSv1 has the disadvantage of 

Fig. 6 Target period slippage, and its correction, in CFSv1: (top) 
Correlation between predictions and observations as a 
function of lag time between verified target month and 
intended target month, for leads of 1, 3, 5, 7 and 9 months 
before (left) and after (right) a MOS correction for slippage 
based on multiple regression. Predictions free of slippage 
should have maximum correlation at zero lag. The hollow 
circles in the right figure show the correlation at zero lag 
prior to the correction. (bottom) Mean squared error (MSE) 
skill score as a function of target month and lead time before 
(left) and after (right) the MOS correction. 

Fig. 7  As in Fig. 6, except for CFSv2 slippage and its correction. 
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a non-evolving CO2 concentration setting, 
and this is one possible reason for the 
slowly declining Nino3.4 SST predictions 
relative to the observed SST.  

e. Probabilistic reliability 

We assess the reliability and 
sharpness of the probabilistic predictions 
of Nino3.4 SST from the two CFS 
versions using reliability analysis. For 
any prediction, probabilities for the 
below-, near- and above-normal 
categories are defined by counting the 
proportion of ensemble members whose 
predictions are in each respective 
category, where the categories are defined 
using tercile cutoffs for the study period. 
The observations are categorized likewise. 
The three categories may be loosely 
representative of La Nina, neutral and El 
Nino conditions. Reliability analysis is 
carried out for the above and below 
normal forecast categories separately. We 
ignore the near-normal category, which 
has repeatedly been demonstrated to have 
weak performance. 

Reliability is a measure of the 
correspondence between the forecast 
probabilities and their subsequent 
observed relative frequencies, spanning 
the full range of issued forecast 
probabilities.  Perfect reliability would be 
achieved, for example, if for the 20 
instances when the above normal Nino3.4 
SST category is assigned a probability of 
40%, the corresponding later observed 
anomalies were above normal category in 
8 (40%) cases. Here we examine just the 
6-month lead predictions, and combine all 
target months. We form eleven 10%-wide 
forecast probability bins. Then there are 
(28×12) = 336 predictions, resulting in an 
expected average of about 31 predictions 
per probability bin.  

The reliability diagrams for the below 
and above normal categories are shown for the two CFS model versions, with uncorrected climatologies, in 
Fig. 10 as the red and green curves, respectively.  For each category, forecasts are binned for forecast 
probability spanning from lowest to highest (x-axis), and are compared to their corresponding observed 
relative frequencies of occurrence (y-axis).  The diagonal line (y=x) represents perfectly reliable forecasts. 
The plots insets below the main panel show the percentage of forecasts having probabilities in each bin. 

Fig. 8  Shortest-lead Nino3.4 SST anomaly predictions of CFSv1 
(blue) and CFSv2 (green) and corresponding observations 
(red) for start times at beginning of August (top), September 
(middle) and October (bottom) over the 1982-2009 period. 

Fig. 9  Bias, relative to observations, in the slope of the linear 
trend fit over the 1982-2009 (C per 28 yr) period for 
Nino3.4 predictions of (a) CFSv1 and (b) CFSv2 as a 
function of target month and lead time. 
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For CFSv1 (Fig. 
10a), positive skill is 
evidenced by the fact 
that predictions with 
increasing 
probabilities for both 
below and above 
normal SST tend to 
be associated with 
increasing observed 
relative frequencies 
of occurrence. The 
curves are not smooth 
because of sampling 
variability related to 
the somewhat small 
sample sizes per bin. 
However, the average 
slope of both curves 
is seen to be 
somewhat less than 
unity. Thus, forecasts 
with very low (high) 
probabilities do not 
result in comparably 
low (high) 
frequencies of 
occurrence — i.e. the 
forecasts exhibit 
overconfidence, 
particularly for 
probabilities between 
0.7 and 0.9 for both 
categories, and for probabilities of 0.0 for above normal predictions. The inset plot at the bottom shows that 
the lowest bin (0 to 0.05) is by far the most frequently issued probability, followed by the highest bin (0.95 to 
1.00) and the second lowest bin (0.05 to 0.15). The U-shaped curve described by the histogram bars indicates 
high forecast sharpness (i.e., probabilities deviating strongly and frequently from climatology), and the fact 
that the slope of the lines is <1 indicates that this degree of sharpness is not warranted, given the level of 
predictive skill achieved at the 6-month lead time.  

The reliability result for the uncorrected CFSv2 (Fig. 10, upper right), while roughy similar to that of 
CFSv1, shows milder overconfidence: the curves have slope closer to (but still less than) unity, with smaller 
deviations below the ideal reliability (45) line for bins for 0.50 and higher probability. Similarly, the lower 
inset shows that zero-probability predictions for above normal SST that are issued more than 41% of the time 
by CFSv1 are issued only 33% of the time by CFSv2, indicating a greater expressed forecast uncertainty. 

The somewhat more reliable probabilistic predictions seen in CFSv2 than in CFSv1 are attributable to a 
combination of its generally higher skill (Figs. 1 and 3) and its slightly less sharp, more conservative 
probabilities that better reflect the true level of uncertainty in the model’s reproduction of the ocean-
atmosphere system. This outcome is consistent with the greater inflation above unity of the standard deviation 
ratio of CFSv1 than CFSv2 noted above, especially at medium to long lead times (left panels of Fig. 5). 
Elimination of the discontinuities in the climatology of the predictions slightly helps to remedy the inflated 
standard deviation ratio of CFSv2 (lower right panel of Fig. 5), and a similar improvement would be expected 
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Fig. 10  Reliability diagrams for (top left)
uncorrected CFSv1, (top right)
uncorrected CFSv2, and (bottom)
CFSv2 using dual prediction
climatology predictions of Nino3.4
SST at 6-month lead time. Red (green)
curve indicates reliability for below
(above) normal SST predictions. The
blue diagonal (45) line represents the
ideal perfect reliability. Probability bins
are 10% wide (e.g., 0.35 to 0.45),
except for the top and bottom ones,
which are 5% wide. The histograms in
the insets below the main panel show
the frequency distribution for
predictions among the probability bins.
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in the reliability analysis. To confirm this expectation, the CFSv2 analysis is applied using dual climatologies 
for the tercile boundary definitions for the model prediction category. Results (Fig. 10c) indicate an overall 
slope closer to unity than when using a single prediction climatology; and the observed relative frequencies 
associated with forecasts of zero probability are less than 2%, suggesting that now such sharply low 
probabilities are justified in the absence of the spurious change in the forecast climatology within the hindcast 
period. Likewise, forecasts with 100% probability are met with correctly verifying observations in about 95% 
of cases for the dual climatologies, rather than only about 80% (90%) for the above (below) normal category 
without the climatology adjustment. All told, the adjustment results in an improvement in probabilitistic 
reliability for CFSv2—most noticeably for forecasts deviating most sharply from climatology. That the 
extreme probability forecasts are most able to be improved in reliability makes sense in view of the expected 
effect of an artificial mean shift in the climatological on forecasts probabilities that heavily define the 
reliability curve, both because they are issued frequently (in this example) and because they form the end 
points of the curve. 

3.  Conclusion 

 Given the large amount of time and resources used to achieve an improved CFSv2 compared with the 
earlier CFSv1, one would expect relatively better predictive skill in CFSv2. Here we examine the skill 
difference between CFSv1 to CFSv2 in predictions of the ENSO state, as represented by Nino3.4 SST 
anomaly. 

CFSv2 is better able to predict the ENSO state than CFSv1 through the northern spring predictability 
barrier, the time of year when the need for better predictions is greatest. By contrast, on initial examination 
CFSv2 appears to fall short of CFSv1 in ENSO prediction skill for northern summer and autumn start times 
— times for which ENSO prediction is known to be least challenging and skill is highest. However, CFSv2 is 
found to be affected by a significant discontinuity in initial condition climatology near 1999 associated with a 
corresponding discontinuity in the high resolution Reanalysis observations generated using CFSv2 (the 
CFSR). The size and impact of this discontinuity turns out to be most prominent in the tropical Pacific region 
(Xue et al. 2011; Kumar et al. 2012). Here, focusing on the skill for Nino3.4 SST anomaly, we highlight 
differences in skill diagnostics that may be related to model improvement, or on the other hand caused by the 
discontinuity. 

The initial condition discontinuity masks CFSv2’s net predictive skill and its general superiority over 
CFSv1 in prediction Niño3.4 SST. This impediment is most noticeable for northern autumn start times when 
skill is highest, when CFSv1 already achieves a high skill level that is difficult to exceed. The skill impact of 
the discontinuity is evaluated by examining skill with versus without the benefit of correction of the 
discontinuity by defining two separate climatologies from which to form anomalies. After correcting for the 
1999 discontinuity, performance of CFSv2 is found to equal or exceed that of CFSv1 more generally at nearly 
all times of the year in terms of anomaly correlation, RMSE, and interannual standard deviation ratio with 
respect to the observations. CFSv2 also exhibits better probabilistic reliability than CFSv1, mainly because of 
its lesser degree of probabilistic overconfidence, and the climatology correction still further increases this 
margin of superiority. Finally, CFSv2 largely lacks “target month slippage” compared with CFSv1— i.e., it 
does not tend to verify better on target times earlier than those intended due to being slow to reproduce major 
transitions in the ENSO state. 

Comparing verifications before and after the climatology correction, the measures seen to be most 
noticeably adversely affected by the uncorrected 1999 change are first the RMSE, and secondly the temporal 
anomaly correlation. The standard deviation ratio and probabilistic reliability analyses are noticeably, but less 
dramatically, affected. When one realizes that the problem is one of a changing calibration, it is easy to expect 
all verification measures to be degraded without a correction. A constant miscalibration is easily corrected, 
and the lack of a correction would not degrade measures such as the anomaly correlation or the slope of the 
reliability curves. However, a changing miscalibration becomes equivalent to a nonsystematic error unless the 
time series is examined by eye (e.g., Fig. 2) and the problem identified and treated with a combination of 
human intervention and machine automation (i.e., choosing the appropriate correction procedure).  
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CFSv2 is shown to have a larger upward trend in Nino3.4 SST than found in the observations, apart from 
the 1999 discontinuity. This appears despite the specification of realistic time-evolving CO2 concentrations—
an improvement over CFSv1, which had a fixed and outdated CO2 concentration. This exaggerated positive 
trend may be related to a problem in the radiation budget, and indicates a potential area of improvement for 
the next improved version of CFS. 

Although the discontinuity has clearly discernible effects on predictions of ENSO-related SST by CFSv2, 
they are not so large as to materially degrade the model’s predictions of climate across much of the globe. In 
fact, performance in climate predictions has been found significantly better than that of CFSv1, including for 
example in the United States during winter when ENSO is a major governing factor (Peng et al. 2013) and 
reproduction of the MJO (Weaver et al. 2011). The skill of CFSv2 is found competitive with that of ECMWF 
system 4 for winter climate predictions over North America, despite relative shortcomings in predictions of 
ENSO and the globally averaged tropical climate (Kim et al. 2012). 
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1. Introduction 

 In this work, we apply the concept of the climate filter (Lee et al. 2011) for potential improvement of a 
grand MME, derived from a combination of APEC Climate Center (APCC) MME seasonal prediction system 
(Lee et al. 2009) and ENSEMBLES (Weisheimer et al. 2009; Alessandri et al. 2011) in order to explore 
whether the methodology can improve the skills of the grand MME, constituent MMEs, and individual 
models. 

2.  Data and methodology 

2.1 Data 

- Target seasons and Periods 

The boreal winter (December through February, DJF) hindcast outputs for the period of 1983-2005  

- Model data set 

Seven coupled models involved in the operational 6-month MME seasonal prediction system of the 
APCC and five coupled models from the European Commission FP7 project called ENSEMBLES for 
seasonal to annual predictions – totaling twelve coupled model hindcast sets – are used in this study. 

- Observed data set 

The atmospheric variables (NCEP-DOE R2, Kanamitsu et al. 2002), precipitation (CMAP, Xie and Arkin 
1997) and sea surface temperature (OISST V.2, Reynolds et al. 2002) from 1983 to 2005 are also used as 
observations.  

2.2 Statistical methods  

For MME prediction, we adopt a simple composite method (Peng et al., 2002; Lee et al. 2009, 2011), 
known as simple arithmetic mean of bias corrected predictions, with equal weights to predictions from 
individual models.  

The standard t-test (Wilks 1995) is employed to compute the statistical significance of the correlations. 
The degrees of freedom for the temporal correlation is estimated as N-2, where N is 23, the number of winter 
seasons during the study period. To find the significance levels for spatial pattern correlations, we use the 
effective spatial degree of freedom (ESDOF) (Wang and Shen 1999).  

Finally, to calculate seasonal anomalies of each model parameter as well as those from observations for 
each year, we follow the standard leave-one-out cross validation method (Jolliffe and Stephenson 2003). We 
also use the cross validation method in each target year while applying the climate filter for all hindcast 
periods.  
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3.  Results 

3.1 Climate Filter 

 At the temporal correlation pattern of Figure 1, high correlations with magnitudes of more than 0.4, 
significant at 95% confidence level from a t-test, are generally located along 10°S-10°N. Especially, there is a 
strong association of the local rainfall in the central and western tropical Pacific with the zonal circulation.  

From the relationship in 
Figure 2, it can be discerned 
that the strong relationship 
between the observed Walker 
circulation with Niño 3.4 (-0.9, 
significant at 99% confidence 
level from a t-test) is well 
reproduced by hindcasts of all 
model Walker circulations. 
We utilize the coefficient of 
variation (i.e., the squared 
correlation coefficient) 
between the Walker 
circulation and the Niño 3.4 
index as a weight for the 
Walker circulation field to 
compute the ENSO-associated 
Walker circulation. Based on 
these points, we believe that it 
is an important measure of 
model fidelity to predict the 
tropical rainfall from model 
simulations of ENSO-
associated Walker circulation in the tropical Pacific and also minimum requirement for any model with 
necessary fidelity. 

3.2 Evaluation of the hindcast relationship in the tropical Pacific 

Specifically, we use two empirical criteria to grade the individual model skills.  

(i) The slope of the regression line fitted between the observed and simulated pattern correlations of 
tropical rainfall and ENSO-associated Walker circulation should be larger than 0.5 and less than 1.5.  

Fig. 1  Temporal correlation patterns between the observed Walker circulation and precipitation for the boreal 
winter (DJF) during the period of 1983-2005. Shading indicates statistically significant correlation 
coefficients at the 90% (0.352), 95% (0.413) and 99% (0.526) confidence levels from a Student’s 
two‐tailed t-test. 

Fig. 2  Time series of SST anomalies from Niño 3.4 (solid red line), and  
Walker circulation index of observation (solid black line) and individual 
models (colored circles), which is defined by difference of Walker   
circulation between the tropical eastern Pacific (10°S-0°, 175°E-105°W) 
and the tropical western Pacific (10°S-5°N, 110°E-135°E) from 1983 to  
2005. 
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(ii) Statistically significant temporal correlation between these observed and simulated pattern 
correlations is more than 0.5 (significant at ~99% confidence level from a Student’s two-tailed t-test). 

Four out of 12 models, namely, model 2, 5, 8 and 9 (Figures 3b, 3e, 3h and 3i) successfully represent the 
realistic rainfall relationship with the local ENSO-associated Walker circulation in the tropical Pacific 
(100°E~60°W, 10°S~10°N) for the boreal winter season.  

3.3 Sensitivity of the fidelity of various MME 

We implement three separate MME hindcast experiments, which are, for convenience, named as the M12 
(essentially a grand MME involving hindcasts from all the 12 models), the A4 (means a filtered grand MME 
involving hindcasts from the four performing models), and the B8 (uses the rest of the model hindcasts). 
Figure 4 indicates the time averages of the spatial pattern correlations between the observed and the simulated 
rainfall and temperature at 850 hPa from all the three MME experiments for six arbitrary regions. In the 
global and tropical regions, slightly better performances of the M12 are essentially due to the relatively better 
performances of the B8 predictions in these regions. Meanwhile, in the four extratropical regions, the gap 
between the MME prediction skills of the A4 and those of the B8 is significantly different. 

Fig. 3  Scatter diagrams depicting spatial pattern correlation between the ENSO-associated walker 
circulation and precipitation from observation (Y-axis) over the tropical Pacific region, for 23 boreal 
winters, plotted against those from the individual models (X-axis). The slope ‘b’ from the fitted 
regression line is provided in the upper left. The ‘xycorr’ represents the temporal correlations of each 
model with observation. 
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4.  Summary and conclusion 

 In order to grade the individual model hindcast performances of two different MME systems, we utilize a 
climate filter concept using evaluation of the relative capabilities of each model. We explore the possible use 
of this climate filter method to filter models with better fidelity, and finally introduce an optimized MME 
suite with enhanced seasonal prediction skills. We find that the MME prediction skills from four better 
performing models are indeed significantly higher as compared to those from the rest of the non-performing 
models, and those from the all-inclusive 12 model grand MME. This research indicates that the MME is 
better skilled if models that can reproduce realistic observed feature are used.  
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Fig. 4   Time average of pattern correlations between the observed and simulated precipitations and those for 
the temperature at 850 hPa from M12, A4,  and B8 over the six regions of the Global region (0°-360°E,  
90°S-90°N),  Tropics (0°-360°E, 20°S-20°N),  East Asia (90°E-150°E, 20°N-50°N),   South Asia (60°E-
120°E,  10°N-40°N),  western North Pacific (120°E-160°E, 10°N-40°N),  and  Australia (110°E-180°E, 
50°S-10°S). 
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1. Introduction 

Uses of reanalyses tend to fall into 
one of three categories, interest in the 
instantaneous or daily analyses, interest 
in the physical cycles diagnosis often 
conducted through a budget study and 
interest in the monthly to longer term 
variability often for climate monitoring. 

In the first part, this study uses the 
procedure of Ebisuzaki and Zhang (2011) to 
evaluate the performance of the daily 
analyses from the newer reanalyses (CFSR, 
ERA-interim and MERRA).  Using an 
ensemble of operational analyses as the 
reference, the various reanalyses were 
examined for the year 2007.   For the 
tropospheric variables, the newer reanalyses 
are better than the previous generation of 
reanalyses.  In comparison with the 
operational analyses, the ERA-interim was 
the best of the newer reanalyses for the year 
2007.  

In the second part of this study we look 
at the top-of-the-atmosphere (TOA) 
radiation budget.  The TOA radiation is the 
primary driver behind the atmospheric 
circulation and can be directly compared 
with satellite observations. For satellite 
observations, we use the Clouds and Earth’s 
Radiant Energy System (CERES) level 3 
data.  The newer reanalyses have a global 
net upward radiative flux of 0.6 to 1.4 
W/m/m (3/2000-2/2009) which is much better than the older reanalyses.  

2. Data 

i) Ensemble members: twice daily (0000 and 12000 UTC) for 2007 on a 2.5 x 2.5 degree grid 

    CFSR: Reanalysis from CFS version 2 (used in place of NCEP GDAS/FNL) 
    CMC: Operational analyses from the Canadian Meteorological Centre 

Fig. 1  Analysis of daily 500 mb height variability described 
by RSM of the various analyses (indicated in each panel’s 
title) from the ensemble mean of operational analyses for 
2007.  
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    EC: Operational analyses from the 
European Centre for Medium 
Range Weather Forecasts 

    FNO: NOGAPS analysis from the Fleet 
Numerical Ocean and 
Meteorological Center 

    UK: Operational analysis from the UK 
MetOffice 

ii) Observed TOA radiation: CERES level 
3 (v2.6r, 12/2011) March 2000-Dec 2011, 
monthly means 

iii) Reanalyses: CFSR (NCEP), ERA-
interim (ECMWF), MERRA 
(GMAO/NASA), JRA-25 (CRIEPI, 
JMA), R1 (NCEP/NCAR), R2 
(NCEP/DOE) 

3. Results 

a) Analyses of daily 500 mb height 
variability (2007) 

Using the ensemble of operational 
analyses as the “truth”, the RMS of the 
various analyses from the ensemble mean 
for the 500 mb Height RMS are plotted for 
2007.  Figure 1 shows the modern analyses 
have less land-sea contrast, indicating that 
the newer systems are making a better use 
of satellite data.  The ERA-interim is the 
best reanalysis for this statistic. 

b) Analysis of daily 200 mb zonal wind 
variability (2007) 

The RMS of the 200 mb zonal wind 
(UGRD) analyses from the mean of the 
operational ensemble is shown by Figure 2.  
Again the land-sea contrast is stronger in 
the older reanalyses.  Of the newer 
reanalyses, the ERA-interim is best for this 
variable followed by CFSR and MERRA.   
The eastern tropical Pacific was a region of 
higher uncertainty.  

Many tropospheric fields were checked 
using the same procedure.  The general 
result was that ERA-interim was best of the 
three newer reanalyses in capturing the 
daily variability. 

c) January OLR climatologies (2001-2011) 

The observed Outgoing Long-wave 
Radiation (OLR) from CERES is compared 
with the various reanalyses on 

Fig. 2  Same as Figure 1 except for 200 mb zonal wind. 

Fig. 3  Left column: observed January OLR (top) and RMS 
(bottom).  Right column: the differences between CFSR 
and the observed January OLR (top) and the RMS of 
(CFS-OBS) anomalies. 
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climatological mean and variability of 
anomalies.  The comparison with the 
January means is shown (Figs. 3-5).  Overall 
there is no clear best reanalysis for January 
OLR.  “Best” depends on the region of 
interest.  The newer reanalyses are much 
better than the older R1, R2 (not shown) and 
JRA-25. 

d) January outgoing short-wave radiation 

The comparison of observed January 
outgoing short-wave radiation (OSR) with 
that of the reanalyses is shown in Fig. 6.  It 
revealed the OSR wasn't as well represented 
as the OLR.  However, the OSR showed a 
similar feature.  The systematic error was 
larger than the error in the anomalies. 

e) Trends in the OLR and OSR 

The global mean OLR, OSR and the net 
radiation at the top of atmosphere (TOA) are 
inspected.  OLR  shows CFSR, ERA-interim 
and MERRA are 2-6 W/m/m more than 
CERES (Fig. 7a).  OSR shows CFSR, ERA-
interim and MERRA are clustered about 
CERES.  The newer reanalyses display 
some trends (Fig. 7b).  The net global 
radiation shows the March 2000 - February 
2009 (net) upward flux is 0.6 (CFSR), 1.4 
(ERA-interim), and 0.7 (MERRA) W/m/m.  
The older R1 and R2 have a 13 and 7 
W/m/m (respectively) net radiative upward 
flux (Fig. 7c). 

4. Summary 

The CFSR was very good representing 

Fig. 4  Same as the right column of Figure 3 but for ERA-
interim (left) and MERRA (right). 

Fig. 5  Same as the right column of Fig. 3 but for R1 (left) and 
JRA-25 (right). 

2,2 

Fig. 6   January OSR (top left) and RSM of anomalies (bottom left) for 2001-2011 from CERES in 
comparison with counter-parts of CFSR (2nd column), ERA-interim (3rd column) and MERRA (last 
column on right). 
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the daily variability in the current environment. For various fields examined, the CFSR did well and was 
comparable to the operational models circa 2007.  Compared with the older R1 and R2, the CFSR did better 
at capturing the daily variability. The biggest improvements were over the oceans which were the result of 
improved satellite instruments and the improved data assimilation of the satellite data. Over the well observed 
land areas, the improvements over R1 and R2 were smaller. Overall, the ERA-interim did the best on the 
primary tropospheric fields.  

The newer reanalyses have improved their OLR in both the systematic and the time varying components 
with the systematic error being larger than the errors in the anomalies.  The OSR was not as well represented 
as the OLR. 

The global TOA radiation budget was better simulated in the recent reanalyses.  The net global flux 
averaged 0.6 (CFSR), 1.4 (ERA-interim) and 0.7 (MERRA) W/m/m upward for the period March 2000-Feb 
2009.   

All the newer reanalyses showed trends in the TOA fluxes, some larger than others. 

References 
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(a) (b) (c) 

Fig. 7  Global OLR (a), OSR (b) and the net radiation (c) with a 12-month running mean. 
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1. Introduction 

 The onset of Maritime Continent monsoon during September to December is strongly influenced by El 
Niño-Southern Oscillation (ENSO).  Timely information on ENSO status has been known to be helpful for 
the Indonesian agriculture, as it enables the local farmers to plan their rice planting (Naylor et al. 2001). 
Using Tropical Pacific July sea surface temperature (SST) as a predictor, Moron et al. (2009) were able to 
construct onset date forecasts that exhibited some skill over parts of Indonesia. 

Precipitation over the Maritime Continent is also strongly influenced by the Madden-Julian Oscillation 
(MJO), leading to the hypothesis that SST-based forecasts of monsoon onset dates could be improved using 
MJO information. The goal of this work is to develop and test a statistical forecast model of monsoon onset 
date over Indonesia, incorporating both ENSO and MJO information. 

2.  Data 

Two precipitation data sets are used to derive the onset dates: gridded pentad CMAP on 2.5×2.5 from 
1979-2009 (Xie and Arkin 1996), and daily rainfall gauge data from 99 stations over Indonesia, compiled 
from the NCDC and CPC GSOD datasets, and the dataset of Hamada and Sribimawati (1998). The local onset 
is defined when the 
accumulated precipitation 
reaches 20 cm, counted 
from July 30. Figure 1 
shows the mean onset dates 
thus calculated, which 
compare well with previous 
estimates (Moron et al. 
2009). 

Predictor variables are 
constructed from OLR 
pentad data obtained from 
NOAA-NCEP-CPC 
(Liebmann and Smith, 
1996), and NOAA ERSST 
data (Smith et al. 1998), 
both 1979–2009. 

3. Methodology 

Empirical forecast models for local onset date are built using multivariate (pattern) regression based on 
cross-validated Canonical Correlation Analysis (CCA), using IRI’s CPT Toolkit 
(http://iri.columbia.edu/climate/tools). 

Fig. 1  Onset dates averaged over all years 1979-2009, derived from gridded 
CMAP and station data.
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In the case of OLR, extended EOFs are applied to the OLR data, so as to include the 8 pentads before the 
forecast start date. Start dates are taken at each pentad, beginning Jul 15–19, and ending Dec 13–17. The CCA 
uses PCs of 5 extended EOFs (EEOFs) of latitude-averaged OLR [10ºS-10ºN] vs. PCs of onset date (4 EOF 
modes), for the Aug–Dec season, with the seasonal cycle subtracted from the OLR data. 

4. Results 

The leading five EEOFs of latitude-averaged OLR are shown in Fig. 2 as a function of time lag. The 
leading mode varies slowly in time, and its timeseries is dominated by interannual periods (not shown). 
EEOFs 2-4 are dominated by sub-seasonal periods and eastward propagation.  

Fig. 2  Leading 5 extended EOFs of latitude-averaged OLR [10ºS-10ºN]. Percentage of variance explained is 
given above each panel. 

Fig. 3   Anomaly correlation skill of cross-validated hindcasts of local onset date, based on OLR conditions at 
consecutive pentads. The start dates are given in each panel.
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Hindcasts of gridded onset date were 
made at different lead times, and their cross-
validated anomaly correlation skill plotted in 
Fig. 3. Each panel shows the skill for a 
particular pentad start date. Skill levels rise 
as the climatological onset date approaches, 
which propagates seasonally from north to 
south (Fig. 1). Grey regions in Fig. 3 denote 
locations where the climatological onset 
date has already passed.  We have repeated 
the hindcasts using only EEOFs 2-4, thus 
filtering out the ENSO-related predictive 
information in EEOF 1. The resulting skill 
levels are generally much lower, except over 
eastern Java during Nov–Dec (i.e. close to 
onset date there, not shown).     

The OLR-based hindcasts in Fig. 3 can be compared with July SST-based hindcasts, shown in Fig. 4. 
Skill levels based on SST and OLR are comparable, but the latter are markedly higher locally as the onset 
approaches. 

4.  Concluding remarks 

 The work reported here suggests that subseasonal OLR observations have the potential to augment the 
skill of onset date forecasts over Indonesia at shorter lead times, compared to that obtained from July SST. 
The regions of skill at shorter lead times are found to migrate southward with the monsoon. Most of the 
increased skill is found to be associated with updating of the interannual predictive signal, rather than to intra-
seasonal modes of variability. 

Acknowledgements.  This work was supported by USAID award AID-OAA-A-11-00011, and by NOAA 
Climate Program Office through a block grant to the IRI. 
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1. Introduction 

Forecast skill and potential predictability of 2 m temperature are assessed using hindcast data 
from Phase 1 of the National Multi-Model Ensemble (NMME) project. Forecast skill was examined 
using the anomaly correlation (AC) of the ensemble mean (EM) of an individual model forecast 
against the observed value. Predictability was considered from two angles: homogeneous, where one 
model is verified against a single member from its own ensemble, and heterogeneous, where a 
model’s EM is compared to a single member from another model. This study provides insight both 
into the NMME and its contributing models and into the physical predictability of the 2 m 
temperature field.  

2. The National Multi-Model Ensemble project 

The NMME is a forecasting system consisting of coupled models from U.S. and, more recently, Canadian 
modeling centers. The multi-model ensemble approach has been proven to produce better prediction quality 
than any single model ensemble, motivating the NMME undertaking. The environmental variables included 

Table 1  All models included in the National Multi-Model Ensemble project, year 1 of Phase 1 (August 2011 
– August 2012).  
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in the first year of Phase I (Aug. 2011 – July 2012) were 2m surface temperature, SST, and precipitation rate; 
real-time and archived forecast graphics from Aug. 2011 – present are available at 
www.cpc.ncep.noaa.gov/products/NMME. Hindcast and forecast data is archived at the International 
Research Institute for Climate and Society (IRI), accessible from the NMME homepage. Table 1 lists the 
models included in the 1st year of Phase 1. All model outputs have 1.0° latitude by 1.0° longitude resolution 
and forecast leads of 1 – 7 months. 29 years of hindcasts (1982-2010) were available for all models except 
CFSv1 (28 years: 1982-2009). Model real-time forecasts are produced by no later than the 8th of each month, 
and graphical forecasts are available on the 9th of each month. Phase I forecasts were all delivered on time in 
year 1.  

3. Forecast skill and predictability 

This study assessed prediction skill, homogeneous predictability, and heterogeneous predictability for the 
29 years of hindcasts for all models, using the anomaly correlation (AC).  The AC is a measure of the 
association between the anomalies of (usually) gridpoint forecast and observed values (Wilks 1995, van den 
Dool 2007).  By “prediction skill”, we mean one model’s ensemble mean (EM) forecast versus the observed 
value. The verification field for 2 m temperature (T2m) is the station observation-based GHCN+CAMS (Fan 
and van den Dool 2008). GHCN+CAMS has a native resolution of 0.5˚ latitude x 0.5˚ longitude, and was 
regridded to 1.0˚ x 1.0˚ for this study. 

One common method of defining potential predictability, i.e. the physical extent to which a parameter can 
be predicted under the best of circumstances, is to evaluate one model forecast versus another (Lorenz 1982).  
Hence, we are testing how effective the model is at predicting itself, and therefore the limit of predictability, if 
we assume the model is a replica of reality. In this context, we apply the so-called ‘perfect’ model assumption, 
i.e. the forecast and proxy-observation are taken from the same world and there are no systematic errors to be 
corrected. Homogeneous predictability assesses one model’s EM, based on N-1 members, against the one 
member that is left out (the proxy-observation). Heterogeneous predictability refers to one model’s EM (based 
on all N members) versus one member 
of another model.   

All values in Table 2 represent the 
29-year hindcast timeseries. Leads 1-3, 
and all 12 start months are combined, 
and the area-averages are done over all 
land north of 23°N and south of 75°N.  
Model anomalies are relative to each 
model’s individual climatology (from 
the 29-year reforecast). No cross-
validation is applied for the prediction 
skill calculations, which may be a 
problem, except for homogeneous 
predictability. 

4. Results 

The following discussion refers to 
Table 2. First, some comments on the 
size of the anomalies. The standard 
deviation (sd; bottom row) of all models 
(i.e. from individual model runs) agrees 
very well with the observations; all are 
in the range of 2.0° - 2.4°C. This is high 
praise, and different from earlier 
impressions (mainly from Demeter) that 
models are underdispersive. The sd of 

Table 2  Anomaly correlations showing 2 m temperature forecast 
skill (model ensemble mean (EM) verified against 
observations), homogeneous predictability (model EM of N-1 
members verified against remaining member), and 
heterogeneous predictability (model EM verified against a 
single member of another model) for the seven models in 
NMME Phase 1. ACs are aggregated over leads 1-3, all start 
months, land 23°N – 75°N. Also shown are standard deviation 
for each model’s EM (EM SD, right column) and a single 
member (singmem & obs SD, lower row). 
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the model ensemble means (EM; far right column) is about 0.75° to 1.0°C, which is appropriately smaller 
than the sd of either the individual ensemble members or the observations. This decrease in sd follows from 
damping of the noise (leaving mainly the signal in the EM) by 1/sqrt(N), where N is the number of 
(effectively) independent ensemble members. Models with higher N have a greater reduction of their sd. 

Prediction skill, measured here by the AC (blue column), varies from -0.01 to +0.19.  These are modest 
numbers, but +0.19 is highly significant because it is based on a huge sample.  (Also, a trustworthy +0.19 
tends to correspond to large areas and many targets times with little or no skill at all and a few areas and 
limited target times with much higher skill.) The homogeneous predictability (the yellow diagonal) ranges 
from 0.12 to 0.27. This is higher than the reported skill ( <= 0.19 ), which means that we can do better 
eventually, but not hugely so. It is probably disappointing that among the seven independent opinions about 
predictability, none is better than 0.27, leaving not much to pick from.  The heterogeneous predictability 
ranges from 0.0 to 0.19, exactly the range of skill already achieved. Heterogeneous predictability and the 
actual skill suffer equally from a mismatch in climate between model and verification – only homogeneous 
predictability estimates are based with justification on a perfect model assumption. The days when models 
predicted each other better than they predict reality appear to be over (at least for monthly means at long lead).  
In summary, all models predict themselves better than they predict other models (or reality). 

Regarding heterogeneous predictability (black off-diagonal elements), we note that Table 2 is largely 
symmetric. This means that “to predict” and “to be predicted” is similar, i.e. if Model A (EM) can predict 
Model B (single member), then the reverse is also true. Curiously, the NCAR model is exceptional in a way: 
it has a hard time to predict anomalies in the other models, or to be predicted by the other models. In and of 
itself we appreciate orthogonal behavior, but since NCAR also poorly verifies against the observations, its 
orthogonality may be erroneous. The trio GFDL, NASA, CFSv2 correlates the most to each other, and have 
the highest skill against observations.  That raises (unaddressed) questions of redundancy. The two IRI 
models predict each other almost as well as they predict themselves. These models are in fact the same, and 
our decision to treat the fully coupled ensemble of 12 and the anomaly coupled ensemble of 12 as two 
separate ensembles may be debatable. (At IRI the two sets were merged into one ensemble.)  The CFSv1 and 
CFSv2 have a shared pedigree obviously, but in contrast to the IRI, the two NCEP model do not predict each 
other very well.   

We finally note that prediction skill is low at present for NCAR and the two IRI-ECHAM models, and 
this is in part because these models have only ocean initialization, i.e. their atmosphere and land initial state is 
random and unlikely to be realistic.  This impacts skill of predicting T2m negatively.  CFS, GFDL and NASA 
attempt to have a realistic atmosphere and land initial state, in addition to a realistic initial ocean. 

Acknowledgements: Other team members: Suranjana Saha, Peitao Peng; all data suppliers (NCAR, GFDL, 
NASA, IRI etc.), funding agents (CPO etc.). 
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1. Introduction 

 The National Multi-Model Ensemble (NMME) project supplies routine guidance to users. Phase I 
(experimental) ran from August 2011 to July 2012.  Phase II is in operation now. This assessment focuses on 
the results of Phase I, and includes diagnostic verification of NMME seasonal and monthly prediction. 
Evaluation metrics include anomaly correlations (AC) calculated from 29 years of  hindcasts (1982-2010) and 
Heidke skill scores (HSS) for the realtime seasonal and monthly 2 meter surface temperature (T2m) and 
precipitation rate (Prate) forecasts from August 2011 to July 2012 over the contiguous United States. 
Prediction of the winter for December-January-February (DJF) 2011/12 is used as a case study. This study is 
motivated by the desire to provide skill benchmarks for future improvements of the NMME seasonal and 
monthly prediction system.   

2. The National Multi-Model Ensemble project 

The NMME is a forecasting 
system consisting of coupled 
models from U.S. and Canadian 
modeling centers. The multi-
model ensemble approach has 
been proven to produce better 
prediction quality than any single 
model ensemble, motivating the 
NMME undertaking. The 
environmental variables included 
in Phase I (Aug. 2011 – July 
2012) were T2m, sea surface 
temperature (SST), and Prate; and 
realtime and archived forecast 
graphics from Aug. 2011 – 
present are available at 
www.cpc.ncep.noaa.gov/products/
NMME. Hindcast and forecast 
data are archived at the 
International Research Institute 
for Climate and Society (IRI), 
accessible from the NMME 
homepage. 

NMME Phase I activities included the following models: 

• NCEP CFS version 1:  15 ensemble members 
• NCEP CFS version 2:  24 ensemble members 

Fig. 1  NMME Prate anomaly forecast (a), probability forecast (b), 
Climate Prediction Center official forecast (c), and observed Prate 
anomaly from CPC URD (d) for DJF 2011-2012. 
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• GFDL CM2.1:  10 ensemble members 
• IRI ECHAM4-f:  12 ensemble members 
• IRI ECHAM4-a:  12 ensemble members 
• NCAR-CCSM3.0:  6 ensemble members 
• NASA:  6 ensemble members 

 All models have 1.0° latitude 
by 1.0° longitude resolution and 
forecast leads of 1 – 7 months. 29 
years of hindcasts (1982-2010) 
were available for all models 
except CFSv1 (28 years: 1982-
2009). Model forecasts are 
produced by the 8th of each month, 
and graphical forecasts are 
available on the 9th of each month. 
Phase I forecasts were all 
delivered on time.  

3. Forecast assessment metrics 

Anomaly correlations (AC) 
were assessed for each model over 
the 29 years (28 for CFSv1) of 
hindcasts. Global maps and area 
averages over the Northern and 
Southern Hemispheres as well as 
the tropics were produced for 
T2m, Prate, and SST. Heidke skill 
scores (HSS) were used to assess forecast verification of Phase 1 probability forecasts. Verifying data sets 
used comprise GHCN+CAMS T2m, regridded to 1° x 1° (Fan and van den Dool 2008), CPC global Unified 
Rain-Gauge Database (URD), regridded to 1° x 1° (Xie et al. 2010), and OI-2 Sea-surface temperature 
(Reynolds et al. 2002), native resolution of 1° x 1°. 

4. Results 

Analysis of ACs (not shown) reveal that ACs for DJF seasonal forecasts at lead 1 month are higher for 
NMME forecasts than for individual models for all three fields. This holds for all area averaged ACs. 

DJF 2011-2012 Prate anomaly 
forecast (Fig 1a), probability 
forecast (Fig 1b), CPC official 
forecast (Fig 1c), and observed 
precipitation (Fig 1d) reveal a low 
HSS, -04, for this season over the 
contiguous United States. 
Forecasts for T2m (Fig. 2), with a 
HSS of 47, were reasonably good. 

Winter 2012 was a difficult 
case for forecasting. Looking at 
the scores for monthly forecasts 
beginning with September 2011 
initial conditions (lead-1 month 
forecast for October 2012) 
through May 2012 initial 

Fig. 2  NMME T2m anomaly forecast (a), probability forecast (b), 
Climate Prediction Center official forecast (c), and observed T2m 
anomaly from GHCN+CAMS (d) for DJF 2011-2012. 

Table 1  Precipitation rate Heidke skill scores over the CONUS for 
monthly forecasts from September 2011 – May 2012 initial 
conditions. Forecast initial month is in the first column; target 
months read across. 
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conditions, higher scores are 
found for both Prate (Table 1) 
and T2m (Table 2) for the 
January – July period, even at 
leads of 6-7 months. This is 
encouraging, as the late winter, 
spring and early summer of 
2012 produced unusually hot 
and dry conditions over the 
CONUS.  

5.  Summary 

At lead 1 month, NMME 
anomaly correlations for DJF 
forecast are higher than those of individual models. DJF 2011-2012 was a difficult case, but lead-1 month 
T2m forecasts over CONUS were reasonably good; precipitation rate forecast had low skill. The very warm 
and dry late winter through early summer over CONUS were fairly well forecasted, even at long leads. This is 
a preliminary examination of the forecast verification. A full verification analysis should help to identify 
sources of strength and weakness. 
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Table 2   Same as Table 1, but for T2m. 
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ABSTRACT 

Analysis of the relative prediction skills of NOAA’s Climate Forecast System version 1 and 2 
(CFSv1 and CFSv2), and the NOAA Climate Prediction Center’s (CPC) operational seasonal outlook, is 
conducted over the 15-year common period of 1995-2009. The analyses are applied to predictions of 
seasonal mean surface temperature and total precipitation over the conterminous United States for the 
shortest and most commonly used lead time of 0.5 months. The assessments include both categorical and 
probabilistic verification diagnostics—their seasonality, spatial distributions, and probabilistic reliability. 
Attribution of skill to specific physical sources is attempted when possible. Motivations for the analysis 
are to document improvements in skill between the two generations of NOAA’s dynamical seasonal 
prediction system and to inform the user community the forecast products skill of the CFS model now in 
use (CFSv2) to help guide the users’ decision making processes.  

The CFSv2 model is 
found to deliver generally 
higher mean predictive 
skill than CFSv1 (Fig. 1). 
This result is the strongest 
for surface temperature 
predictions and potentially 
may be related to the use 
of time-evolving CO2 
concentration in CFSv2, 
in contrast to a fixed (and 
now outdated) 
concentration used in 
CFSv1. CFSv2, and 
especially CFSv1, exhibit 
more forecast 
“overconfidence” than the 
official seasonal outlooks, 
despite that the CFSv2 
hindcasts have 
outperformed the outlooks 
more than half of the time. 
Results justify the weight given to CFSv2 in developing the final outlooks, which is more than that given 
to previous dynamical input tools (e.g., CFSv1), and indicate that CFSv2 should be of greater interest to 
users. 

This work is to be published shortly in Weather and Forecasting.  

Fig. 1  Time series of spatial mean of Heidke skill score (HSS) over the US for 
CFSv1 (black), CFSv2 (red), and CPC official seasonal forecast (blue) of 
temperature (top left) and precipitation (top right); seasonal march of the 
mean HSS over the 15-year study period for the three forecast sources of 
temperature  (bottom left) and precipitation (bottom right). 
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ABSTRACT 

The focus of this investigation is how the relationship 
at intraseasonal time scales between sea surface 
temperature (SST) and precipitation (SST-P) varies 
among different reanalyses. The SST-P relationship in 
observation is much better reproduced in CFSR, the 
Modern Era-Retrospective-analysis for Research and 
Applications (MERRA) and the ECMWF Re-Analysis 
Interim (ERAI) compared to that in the NCEP/NCAR 
reanalysis (R1) and the NCEP/DOE reanalysis (R2) 
(Fig.1, top panel). The differences in SST-P relationship 
at intraseasonal time scales across different reanalyses 
are not due to whether the reanalysis system is coupled or 
atmosphere alone, but are due to the specification of 
different SSTs. The SST-P relationship in different 
reanalyses, when computed against a single SST for the 
benchmark, demonstrates a relationship that is common 
across all the reanalyses and observations (Fig. 1, bottom 
panel). The results also demonstrate that the MERRA and 
ERAI overestimate the intraseasonal variability in 
precipitation compared to the observation.  

Part of this work has been published in Monthly 
Weather Review in 2012. 

Paper published 

Kumar, A., L. Zhang and W. Wang, 2012: Sea surface 
temperature - precipitation relationship in different 
reanalyses. Mon. Wea. Rev., doi: http://dx.doi.org/ 
10.1175/MWR-D-12-00214.1. 

Fig. 1  Lead-lag SST-precipitation correlation for
various reanalyses and for observations over
the tropical western Pacific (averaged over
10°S–10°N, 130°–150°E) for respective SSTs
were used (top panel), and for NCDC SST as
the benchmark (bottom panel). Negative
(positive) lag in days on the x axis indicates
days by which the SST leads (lags) the
precipitation. 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
37th NOAA Annual Climate Diagnostics and Prediction Workshop  
Fort Collins, CO, 22-25 October 2012                                                                                         

______________ 

Correspondence to:  Zeng-Zhen Hu, Climate Prediction Center, NCEP/NWS/NOA, 5830 University Research Court, 
College Park, MD 20740-3818;  E-mail:  Zeng-Zhen.Hu@noaa.gov.   

Prediction Skill of Monthly SST in the North Atlantic Ocean 
in NCEP Climate Forecast System Version 2 

Zeng-Zhen Hu1, Arun Kumar1, Bohua Huang2, 3, Wanqiu Wang1, Jieshun Zhu3, and Caihong Wen1,4 

1Climate Prediction Center, NCEP/NWS/NOAA, MD 
2Department of Atmospheric, Oceanic, and Earth Sciences, Gorge Mason University, VA 

3Center for Ocean-Land-Atmosphere Studies, MD 
4WYLE Science, Technology and Engineering Group, McLean, Virginia 

ABSTRACT 

This work evaluates the skill of retrospective 
predictions of the second version of the NCEP 
Climate Forecast System (CFSv2) for the North 
Atlantic sea surface temperature (SST) and 
investigates the influence of El Niño-Southern 
Oscillation (ENSO) and North Atlantic 
Oscillation (NAO) on the prediction skill over this 
region. It is shown that the CFSv2 prediction skill 
with 0-8 month lead displays a “tripole”-like 
pattern with areas of higher skills in the high 
latitude and tropical North Atlantic, surrounding 
the area of lower skills in the mid-latitude western 
North Atlantic (Fig. 1). This “tripole”-like 
prediction skill pattern is mainly due to the 
persistency of SST anomalies (SSTAs), which is 
related to the influence of ENSO and NAO over 
the North Atlantic. The influences of ENSO and 
NAO, and their seasonality, result in the 
prediction skill in the tropical North Atlantic the 
highest in spring and the lowest in summer. In 
CFSv2, the ENSO influence over the North 
Atlantic is overestimated but the impact of NAO 
over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 
are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North 
Atlantic.  

The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North 
Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated 
air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in 
the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, 
both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream. 

This work has been published in Climate Dynamics in 2012. 

Paper published 

Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2012: Prediction skill of monthly SST in the 
North Atlantic Ocean in NCEP Climate Forecast System version 2. Clim. Dyn.,  doi: 10.1007/s00382-
012-1431-z (published online). 

Fig. 1  Zonal averages over the North Atlantic Ocean for 
correlations between OIv2 SSTA and CFSv2 
predicted SSTA (left), lag correlations of OIv2 
SSTA (middle), and correlations of SSTA   between 
initial conditions and 0-8 month predictions of 
CFSv2 (right). Only 0.5 contour is plotted. 
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ABSTRACT 

The ocean temperature response to El Niño–Southern Oscillation (ENSO) is examined based on 31-yr 
(1981–2011) simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast 
System (CFS) coupled model.  The model sea surface temperature (SST) in the tropical Pacific is relaxed to 
observations to ensure realistic ENSO variability in the simulations.  

In the tropical Pacific, the 
subsurface temperature response to the 
ENSO SST is closely related to the 
variability of thermocline.  The early 
temperature response is stronger and 
deeper in the tropical Indian Ocean 
than in the tropical Atlantic.  The 
analysis at three selected locations (Fig. 
1) reveals that the peak response of the 
subsurface temperature to ENSO lags 
the Niño-3.4 SST by 4, 7, and 7 
months, respectively, in the tropical 
Indian Ocean, subtropical Atlantic, and 
North Pacific, where SSTs are known 
to be strongly influenced by ENSO.  
The ENSO-forced temperature 
anomalies tend to penetrate to deeper 
ocean with time in the North Pacific 
and subtropical Atlantic, but not in the 
tropical Indian Ocean where peak 
anomalies are found at month 4 over 
all depths above the 300 m depth.  The 
longer (shorter) response timescale in 
the North Pacific and subtropical 
Atlantic (tropical Indian Ocean) is 
closely related to more (less) persistent 
local surface wind stress anomaly 
forced by ENSO.  The results 
presented in this study may help 
understand the attributions for SST 
anomalies and oceanic variability in different ocean basins and their link to the ENSO variability.   

This work has been submitted to Journal of Climate. 

Fig. 1  Ocean temperature anomalies at (a) tropical Indian Ocean 
(60ºE, 10ºS), (b) North Pacific (150ºW, 30ºN), and (c) 
subtropical Atlantic (30ºW, 15ºN) and (d) corresponding 
amplitude of surface wind stress anomalies at 60ºE, 10ºS (red), 
150ºW, 30ºN (blue), and 30ºW, 15ºN (orange) obtained based on 
lagged linear regressions against the Niño-3.4 index for 
individual CFS simulations and then averaged over the nine 
members.  The anomalies correspond to a two-standard-deviation 
Niño-3.4 SST anomaly (1.8ºC) and lag the Niño-3.4 SST 
anomaly from 0 month to 24 months. 
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1. Introduction 

 Multi-day periods in the warm season in which heavy precipitation falls across a large region are not 
always well predicted even a few days in advance of the onset of heavy rain.  Yet these events are also very 
important in the context of seasonal climate prediction, as an event of this type can result in a large fraction of 
the rainfall in a particular region.  This research will outline some of the processes typically associated with 
widespread heavy rainfall and will evaluate the performance of global ensemble prediction systems for 
several recent events. 

2.  Case selection 

The Climate Prediction Center’s (CPC) US daily precipitation analysis (Chen et al. 2008), which has 
0.25° grid spacing, was used to identify all 5-day periods during 1948—2011 where over 350 grid points had 
precipitation exceeding 100 mm (4 inches) of rainfall.  Over this period, there were 22 cases identified in June, 
July, and August, after removing overlapping 5-day periods.  

Fig. 1  (upper left) CPC analysis of total precipitation (mm) from 1200 UTC 3 July to 1200 UTC 8 July 
1993.  (lower left) As in the upper left, but for the precipitation anomaly.  (upper right) Average 500-
hPa geopotential height (m) from 4-8 July 1993 from the NCEP-NCAR Reanalysis (Kalnay et al. 
1996).  (lower right) 500-hPa geopotential height anomaly from 4-8 July 1993. 
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3.  Weather systems associated with widespread heavy rainfall in the warm season 

 Of the 22 warm-season events taking place during 1948—2011, 13 were associated with tropical 
cyclones.  These events, while clearly important and impactful, were not the primary focus of this work.   Six 
of the 22 events were associated with persistent, anomalous synoptic-scale troughs over the US.  An 
archetypal example of this pattern was the widespread heavy rain and flooding during July of 1993 in the 
Midwest (Fig. 1).  The June 2008 Midwest floods were also very similar to the 1993 floods in terms of their 
large-scale pattern (e.g., Bodner et al. 2011).  

Two of the 22 events were associated with “predecessor rain events” (Galarneau et al. 2010), which occur 
when tropical moisture is transported ahead of an extratropical cyclone and lifted along a baroclinic zone in 
the midlatitudes.  These occurred ahead of tropical cyclone Grace in 2003 and tropical cyclone Erin in 2007. 

The last of the warm-season events identified here was associated with a long-lived mesoscale convective 
vortex (MCV) that remained nearly stationary for over a week from 24 June-1 July 2007 (Fig. 2; Schumacher 
2011).   Schumacher and Davis (2010) showed that at the medium range, this event was very poorly predicted 
in the European Centre for Medium Range Weather Forecasts (ECMWF; Fig. 3a) ensemble prediction system 
relative to other events of similar spatial and temporal scale.  Lynch (2012) extended this analysis to the 
NCEP and UK Met Office global ensemble prediction systems and found similar results. (Fig. 3b). 

4. The June 2007 extreme rainfall in the Southern Plains 

Ensemble-based synoptic analysis (e.g., Hakim and Torn 2008) was employed using the ECMWF 
ensemble forecast initialized at 0000 UTC 24 June 2007.  Schumacher (2011) found that the strength of an 
anticyclone over the southwestern U.S. was one of the key determining factors in the genesis and longevity of 
the MCV and associated rainfall over the Southern Plains.  In ensemble members with a weaker anticyclone 
in the southwest, which was closer to the observed evolution, the incipient vortex encountered relatively weak 
vertical wind shear.  This allowed deep convection to repeatedly form near the center of the vortex, which in 
turn caused the vortex to intensify, and so on (Fig. 4a).  In members with a stronger anticyclone, however, the 
vortex experienced stronger vertical wind shear, which led to stronger steering flow as well as convection 

Fig. 2  As in Fig. 1, except the precipitation totals are for 1200 UTC 25 June to 1200 UTC 30 June 2007, 
and heights are for 26-30 June 2007.  
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developing downshear of 
the vortex center, and the 
incipient vortex moved 
southwestward into Mexico 
and decayed without 
producing any extreme 
precipitation (Fig. 4b).  
These small differences in 
the midlevel flow 
configuration were 
associated with large 
differences in the location 
and intensity of 
precipitation over the 
southern Plains, and were 
thus responsible for the low 
skill and high uncertainty in 
the global ensemble 
forecasts.  

5. Summary and 
conclusions 

This research illustrates 
the variety of synoptic-scale 
patterns that can lead to 
widespread heavy 
precipitation in the warm 
season, including tropical 
cyclones, anomalous 
troughs, predecessor rain 
events, and long-lived 
mesoscale convective 
vortices.  The upscale 
growth of mesoscale 
convection in late June 2007 
led to rainfall of sufficient 
intensity and coverage to be 
relevant to regional climate, 
yet this event was poorly 
predicted and likely had low 
intrinsic predictability. 

Acknowledgements. 
Precipitation analyses were 
obtained from the CPC, and 
ensemble forecast output 
was obtained from the 
TIGGE archive at ECMWF 
(http://tigge.ecmwf.int).  
Thanks to Chris Davis, 
Samantha Lynch, and 
Heather Vazquez for their 
contributions to the research summarized in this report. 

Fig. 3  Area under the receiver operating characteristic (ROC) curve for forecasts
of 50 mm of rainfall in the (a) ECMWF and (b) NCEP ensemble prediction
systems.  Confidence intervals were calculated using a 1000-sample bootstrap
resampling.  A perfect forecast has ROC area of 1; a random reference forecast
has area 0.5. The red lines represent the June 2007 event discussed in section
4.  From Lynch (2012).
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Fig. 4  Schematic diagram illustrating the large-scale factors leading to (a) development and (b) non-
development of a long-lived vortex and associated widespread rainfall, as indicated by differing 
ensemble members.  The 500-hPa height pattern at an earlier time, and 36 later, are shown for both 
instances.  Black arrows denote representative flow vectors.  The ``X'' indicates the location of the 
500-hPa vorticity maximum, gray shading indicates the location of deep convection, and the dotted 
arrow indicates the movement of the vortex over time.  From Schumacher (2011). 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
37th NOAA Annual Climate Diagnostics and Prediction Workshop  
Fort Collins, CO, 22-25 October 2012 

______________ 

Correspondence to:  Monika Barcikowska, Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 
Germany;        E-mail: monika.barcikowska@hzg.de. 

Changes in Activity of the Intense Tropical Cyclones for the 
Western North Pacific During the Last Decades, Derived 

From a Regional Climate Model Simulation  

Monika Barcikowska, Frauke Feser, and Hans von Storch 

Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany 
and 

Cluster of Excellence ‘Integrated Climate System Analysis and Prediction’ (CliSAP)  
of the University of Hamburg, Germany 

1. Introduction 

 The observation-based studies so far haven’t reached consensus regarding the trends of tropical cyclones 
(TCs) in the western North Pacific (WNP) during the last six decades. Such results are related to deficient 
(Barcikowska 2012; Song et al. 2010; Landsea et al.) observational data sets (best track data sets, hereafter 
referred to BTD), containing inhomogeneities introduced by operational practices which are changing over 
time and measurement techniques. This limits the reliability of derived TC climatologies and also the 
feasibility to associate the TC activity with environmental factors.  

As for an alternative data set, which is long and homogenous enough to derive climate statistics, an 
atmospheric regional climate model was employed. In this study, we analyze TC activity over the WNP, 
derived from dynamically downscaled NCEP/NCAR re-analyses for the period 1948-2011. 

Section 2 describes the data and methods used for this study. Section 3 examines the spatial and temporal 
changes in TC activity. Section 4 shows the relation of given changes to large-scale environmental patterns. 

2.  Data and methods 

The regional climate model applied to simulate 
long-term TC climate is COSMO-CLM (CCLM, 
www.clm-community.eu; Rockel et al. 2008; 
Steppeler et al. 2003). The model domain covers the 
western North Pacific and South-East Asia (Fig. 1) 
with a horizontal resolution of 0.5° (~ 55 km) and 32 
vertical levels. The model runs in non-hydrostatic 
mode and the Kain-Fritsch scheme (Kain 2004) is used 
as convective parameterization.     

CCLM is driven by large-scale fields provided by 
global NCEP-NCAR reanalyses I (Kalnay et al. 1996; 
Kistler et al. 2001), hereafter called NCEP, at a 
horizontal resolution of T62 (~ 210 km)) as boundary 
and initial conditions. Additionally, the spectral 
nudging technique (von Storch et al. 2000) was 
applied to the whole model domain, and only for the 
horizontal wind components. 

The influence of large-scale circulation patterns on 
hindcasted TC variability was quantified with a 
Canonical Correlation Analysis (e.g. von Storch and 

Fig. 1  CCLM model domain and surface elevation 
(m) of the CCLM simulation for Southeast Asia 
and the western North Pacific with a grid 
distance of 0.5° latitude x 0.5° longitude. 
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Zwiers 1999). The method estimates 
the maximum correlation between two 
multidimensional data sets. Here we 
analyzed the association of TC spatial 
density with Maximum Potential 
Intensity (MPI) patterns and Genesis 
Potential Index (GPI). For this purpose 
the first ten EOFs were computed 
using yearly anomalies of atmospheric 
variables calculated during JASO 
(July-October, hereafter JASO months) 
months. It is assumed that the first ten 
EOFs represent the main patterns of variability and those were used for further analysis (Leoncini et al. 2008; 
von Storch and Zwiers 1999).  

The MPI (Emanuel 1988) is computed with a program provided by K. Emanuel on the website 
ftp://texmex.mit.edu/pub/emanuel/TCMAX/. The yearly values of MPI for the WNP region were calculated 
with the sea surface temperature (SST) fields that were used to drive the regional model. The GPI is defined 
by (Emanuel and Nolan 2004).  

Simulated TC activity is compared with the BTD observations, provided by Joint Warning Typhoon 
Center (http://www.usno.navy.mil/JTWC/). 

3.  Changes of TC activity over the western North Pacific for the years 1948-2011 

 Impact of TCs on coastal populations depends on 
their frequency, duration, intensity and location. 
Therefore we analyse the number of days for intense 
TCs, which account for the first three given parameters. 
Figure 2 presents simulated and observed annual 
numbers for the intense TC days normalized by their 
mean values for the period 1948-2011. 

For the period 1978-2011 yearly TC variability in 
CCLM (CLM cat2_5) is comparable with the 
observations, given by BTD set (hereafter referred to 
JTWC cat2-5,). For the previous period, prior to the 
satellite-measurement era, observations show higher TC 
activity numbers. These differences may be related to 
the limited spatial/temporal coverage of observations 
and limited accuracy of TC measurement techniques. 

Long-term trends in CCLM time series show an 
increasing trend for the period 1948-2011, with a slope 
coefficient of 0.02 for the intense TCs. The maximum 
of the TC activity occurs in the 1990s with a slight shift 
towards less numbers in the last decade. 

Increasing frequency of the intense TCs is 
consistent with increasing intensity of the intense TCs.  
Figure 3 shows the annual maxima of TC intensity 
simulated by CCLM, in terms of maximum wind speed 
and minimum pressure.  The 50th percentile of annual maxima for TC intensities during the analysed period 
are ~ 34 m s-1 and ~ 962 hPa for wind speed and pressure, respectively.  Time series clearly show an 
increasing trend for maximum wind speed and a decreasing trend for minimum pressure. TC cores are 
deepening from ~ 970 hPa in the early 1960s, to ~ 950 hPa in the 2000s.  

Fig. 2  Annual numbers for the intense TC days counted for July-
October seasons, normalized by their climatological mean 
values for the period 1948-2011, CCLM (red) and JTWC (blue). 
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Fig. 3 Annual maxima of TC intensity (dashed 
line) and annual mean of TC intensity from all 
derived TCs (solid line). Intensity is shown in 
terms of maximum wind speed (top) and 
minimum pressure (bottom). The x-axis 
shows years. The y-axis shows (top) wind 
speed (units: m s-1) and (bottom) pressure 
(units: hPa). 
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Figure 4 shows that TCs that 
reach an intensity higher than the 
50th percentile of TC intensity 
annual maxima (~ 34 m s-1 for wind 
speed and ~ 962 hPa for pressure) 
occur mainly in the second part of 
the analysed period and their 
frequency increases. 

Spatial features of TC activity 
changes are presented in Fig. 5. The 
picture presents long-term spatial 
density trends for intense TCs. 
Trends were derived with a linear regression using a least squares fit, for every grid box. TC activity shows an 
increase along the South Asian coast, eastward from the northern part of the Phillipines and extends towards 
the southern flanks of Japan. The maximum is located in the subtropical latitudes, in the vicinity of Taiwan 
(Barcikowska et al. 2012, submitted). Downward tendencies of TC activity are focused mainly in the south-
eastern part (130-150°E, 10-20°N) of the WNP. Overall, the constructed TC climatology shows an increase 
and a north-westward shift of intense TC tracks for the period 1948-2011.  

Several observational studies that analysed 
the impact of TCs in the WNP for shorter time 
periods (Ho et al. 2004; Wu et al. 2005) 
confirm partly our findings. Tu et al. (2009) 
found strong TC variability after 1982 and an 
abrupt shift of TC activity in the vicinity of 
Taiwan in the 2000s. The authors concluded 
that there is a northward shift of typhoon tracks. 
Wu et al. (2005) identified a westward shift of 
TC track patterns in the WNP for the last 
decades and stated that there is a rising 
influence of TCs on subtropical East Asia. 

4.  Relationship of TC activity with large-
scale environmental patterns 

 Variability of TC activity is determined by 
many environmental factors. High sea surface 
temperature, high moisture content in the lower 
troposphere, conditional convective instability, cyclonic vorticity and weak vertical shear of horizontal winds 
are necessary conditions,  although not sufficient for tropical cyclogenesis to occur (Gray 1968).  

We utilize two indexes (MPI and GPI), combining given parameters, to estimate and explain derived 
yearly variability of intense TCs. The MPI (Emanuel 1988) is determined by: sea surface temperature, the 
outflow temperature and convective available potential energy. It represents thermodynamic conditions which 
influence TC genesis and intensification. The GPI combines additionally dynamical factors, e.g. vertical wind 
shear, absolute vorticity.  Thus GPI indicates how favourable thermodynamical and dynamical conditions are 
for TC genesis and development. 

 In order to quantify the relation between yearly variability of intense TCs and large –scale environmental 
patterns (represented by MPI and GPI), we apply canonical correlation analysis (CCA). CCA results are two 
pairs of correlating patterns. Figure 6a and 6b show the pattern of anomalies for: 3-yr MPI fields and 3-yr 
spatial density of the intense TCs. Figure 6c presents the time series of those patterns. The time series of CCA 
pattern for the intense TCs explains 71 % of total variability. Figure 7 shows in the same manner the 
relationship between intense TC activity and GPI.    
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Fig. 4  Number of TCs reaching the intensity threshold (50th 
percentile of annual maxima of TC intensity for the period 1948-
2011). Intensity is represented as maximum wind speed (red) and 
minimum pressure (green). 

Fig. 5  Trends for yearly intense TC occurrences, estimated 
with a linear regression using a least squares fit derived 
for every 2° latitude x 2° longitude grid box; for the 
period 1948-2011.  
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CCA patterns for 3-yr MPI and 
TCs share a correlation of 68 %. The 
relationship represented by CCA 
patterns indicates that anomalously 
positive MPI along the SE Asian 
coast is strongly related to an 
anomalously high activity of the 
intense TCs in the same region. Time 
series of given patterns share a 
correlation of 0.65. Both time series 
show an increasing activity with the 
maximum in the early 2000s. 

However, anomalously high TC 
activity in 1982/83 and in the early 
1990s cannot be explained with the 
derived MPI pattern, which in these 
years is rather inactive (Fig. 6c). In 
these years, other modes of 
variability might reduce the strength 
of the derived MPI pattern, 
particularly ENSO variability, which 
was in a strong, positive phase (El 
Niño) in 1982/83 and the early 1990s. 
At that time the sea surface 
temperature (and consequently MPI) 
shows positive anomalies in the 
equatorial central and eastern Pacific, 
but – negative anomalies in the 
western North Pacific. Consequently 
the positive anomalies of these 
factors, which are visible along the 
SE Asian coast in the first CCA MPI 
pattern (Fig. 6a), are diminished 
during the warm ENSO phase.  

To find a potential reason for 
anomalously high TC activity in 
1982/83 and the early 1990s we 
analysed its relation to GPI.  Figure 
7a, b represents the first canonical 
correlation patterns derived between 
anomalies of GPI and TCs (CCA GPI 
and CCA TC, respectively). The 
patterns share a correlation of 45 %. 
The CCA GPI (Fig. 7a) captures the 
ENSO signal quite clearly, indicating 
positive anomalies in the eastern part 
of the western North Pacific and negative anomalies in coastal regions. CCA TC reflects the spatial features 
of the GPI pattern. The time series of CCA patterns confirm an influence of ENSO on TC activity. The 
magnitude of GPI values (Fig. 7c) clearly indicates strong ENSO phases in 1982/1983, in the 1990s and 
1999/2000. This corresponds to high TC activity in El Nino phases (1982/1983 and 1990s), and low TC 
activity in La Nina (1999/2000). The time series of the given patterns show a correlation of 60 %. 

Fig. 6  The canonical correlation patterns derived between: (a) 3-yr 
spatial density anomalies of the intense TCs (CCA TC) and (b) 3-
yr fields of Maximum Potential Intensity anomalies (CCA MPI). 
The CCA patterns share a correlation of 68 %. Time series for 
correlating CCA TC and CCA MPI patterns are shown in c). 

Fig. 7  The canonical correlation patterns derived between: (a) 3-yr 
spatial density anomalies of the intense TCs (CCA TC) and (b) 3-
yr fields of Genesis Potential Index anomalies (CCA GPI). The 
CCA patterns share a correlation of 45%. Time series for 
correlating CCA TC and CCA GPI patterns are shown in c). 
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 5.  Summary 

This paper presents the TC activity over the western North Pacific for the last six decades. In order to 
construct a TC data set, we employed a regional atmospheric model (CCLM) to dynamically downscale 
NCEP-NCAR reanalyses.     

Comparisons of the resulting data set with more recent observations (1978-2008) show that the simulated 
TC climatology represents realistic features of TC activity variability on inter-annual to inter-decadal time 
scales. 

The constructed long-term TC climatology shows an increase and a north-westward shift of intense TC 
tracks for the period 1948-2011. The variability of TC activity shows a relationship with large-scale 
environmental patterns, represented by MPI and GPI. 

Increasing TC activity over the last decades along the SE Asian coast shows a relation with the MPI 
pattern. The pattern and its time series indicate a change of thermodynamic conditions in the same region 
towards conditions which are more favourable for TC genesis and intensification. Another mode of TC 
variability shows a link with ENSO, represented by the GPI pattern. The given relationships explain high TC 
activity: in the 1990s mainly due to the warm ENSO mode; in the 2000s due to favourable thermodynamic 
TC genesis and development conditions which occurred over coastal regions of the WNP. 
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1. Introduction 

 El Niño-Southern Oscillation (ENSO) is a large-scale mode of coupled atmospheric/oceanic variability 
that impacts weather and climate around the globe (Rasmusson and Carpenter 1982).  ENSO has significant 
impacts on tropical cyclone (TC) activity worldwide (Camargo et al., 2007), with its notable impacts on 
seasonal Atlantic basin TC activity as well as U.S. hurricane landfalls being noted in a large number of 
studies (e.g., Klotzbach 2011 and references 
therein).  The Madden-Julian Oscillation (MJO) 
is a large-scale mode of tropical variability that 
propagates around the globe on an approximately 
30-60-day timescale (Madden and Julian 1972).  
As it does, it alters large-scale fields such as 
vertical wind shear, sea level pressure (SLP), 
mid-level moisture and vertical motion.   
Klotzbach (2010) showed that when the 
convectively active phase of the MJO was 
located over Africa or in the western Indian 
Ocean (Phases 1-2 of the Wheeler-Hendon (WH) 
index (Wheeler and Hendon 2004)), Atlantic TC 
activity was enhanced. 

Given that climate conditions appear more 
favorable for Atlantic basin storm formation in 
particular phases of the MJO and ENSO than in 
others, this study examines the possibility that 
these impacts extend to RI events as well.  
Section 2 describes the data utilized, while 
Section 3 examines the impacts of ENSO on 
Atlantic basin RI.  Section 4 examines how RI 
frequency changes with MJO phase, while the 
strength of the relationship between RI and the 
combined MJO/ENSO index is considered in 
Section 5.  Section 6 concludes the manuscript 
and provides ideas for future work. 

2. Data 

The Multivariate ENSO Index (MEI) was 
utilized to classify ENSO events (Wolter and 
Timlin 1998).  The MEI index is calculated using 
a bi-monthly average (e.g., August-September).  
For the Atlantic hurricane season, the average of 

Fig. 1  200-mb velocity potential anomalies (m2 s-1) for 
the top 200 days for each MJO phase from July-
October for each phase of the WH index.  Cool 
colors indicate upper-level divergence while warm 
colors indicate upper-level convergence. 
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the August-September and September-October MEI values are utilized.  The ten highest values of the index 
since 1974 are classified as El Niño, the ten lowest values are classified as La Niña while the sixteen years in 
the middle are classified as neutral.  All years since 1974 (excluding 1978) are utilized in this analysis, since 
this is when the MJO index is available in real-time.     

The index utilized to classify the MJO was developed by Wheeler and Hendon (2004).   The WH index is 
available from 1974-present, with data missing from April-December 1978 when OLR was unavailable.  For 
this study, the period from 1974-2010 (except 1978) was examined.  Figure 1 displays 200-mb velocity 
potential anomalies for the 200 days where the MJO is of the strongest amplitude for each of the eight phases 
of the MJO as defined by the WH index.  Negative velocity potentials (cool colors) denote areas of upper-
level divergence where convection is enhanced, while positive velocity potentials (warm colors) indicate 
areas where convection is suppressed. 

An additional index is one that analyzes a similar tropical convective signal to that analyzed by the WH 
index but with ENSO and the 120-day-mean retained.  This index is utilized to approximate the combined 
signal of MJO and ENSO in this analysis and is referred to as the WH-Combined index throughout the 
remainder of this manuscript.  All calculations for both MJO indices are done for systems where the index 
(RMM1 + RMM2) (Wheeler and Hendon 2004) is greater than one (approximately 60% of days during the 
hurricane season).  This helps to separate out periods when the MJO is inactive.   

TC statistics were calculated from the National Hurrican Center’s Best Track file available online at 
http://www.nhc.noaa.gov/data/hurdat/tracks1851to2010_atl_reanal.txt.  Rapid intensification (RI) events were 
defined when a system intensified by 25-, 30-, 35-, and 40 or more knots in a 24-hour period.   

The National Centers for Environmental Prediction/National Center for Atmospheric Research 
(NCEP/NCAR) Reanalysis I (Kistler et al. 2001) was utilized for all large-scale field calculations.  All large-
scale fields are calculated over the Main Development Region (MDR), which is defined to be 7.5-22.5°N, 75-
20°W for this analysis, in keeping with the definition utilized by Klotzbach (2010). 

3. ENSO's impacts on Atlantic basin RI 

 ENSO's impacts on Atlantic basin TCs 
have been related to a variety of physical 
fields, including changes in vertical wind 
shear, mid-level moisture, upper-
tropospheric temperature and static stability 
(Tang and Neelin 2004; Klotzbach 2010).  
Given previous research, it is expected that 
Atlantic basin RI frequency might also be 
increased in La Niña years.  Figure 2 
displays the number of 24-hour RI events 
for various categories (from 25 to 40+ knots 
in 24 hours) for the MDR.  The ratio 
differences between La Niña and El Niño 
reach approximately 6:1 when the MDR is 
considered. 

Another way to evaluate ENSO's 
impacts on RI is to examine the frequency of 
storms intensifying by various RI thresholds 
given a particular phase of ENSO.  For 
example, 32% of systems forming in the 
MDR in a La Niña year undergo at least one 
40+ knot RI at some point during their 
lifetime, while only 12% of systems forming in the MDR in an El Niño year undergo this level of RI. 

Fig. 2  Average numbers of events per-year for systems 
undergoing RI of 25-knot, 30-knot, 35-knot and 40+-knot 
thresholds for the entire Atlantic basin within a 24-hour 
period for years classified as La Niña (blue column), 
neutral (green column) and El Niño (red column).  See 
text for ENSO classification scheme.    
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Table 1  Number of 24-hour periods for systems undergoing RI of 25-knot, 30-knot, 35-knot and 40+-knot 
thresholds for systems forming in the MDR.  Also provided are values normalized by the number of days that the 
MJO spends in each phase for July-October for systems forming in the MDR.  These normalized values are 
multiplied by 100, so they can be interpreted as the number of 24-hour periods that one should expect given 100 
days in a particular MJO phase.  Ratios between Phases 1+2 and Phases 6+7 are provided for the normalized values. 

MDR Systems 
 24 Hour Periods Normalized Values 

MJO Phase 25 Kt 30 Kt 35 Kt 40+ Kt 25 Kt 30Kt 35 Kt 40+ Kt 
1 98 61 36 27 22.0 13.7 8.1 6.1 
2 89 58 37 27 22.4 14.6 9.3 6.8 
3 15 6 3 2 6.9 2.8 1.4 0.9 
4 37 23 11 7 14.5 9.0 4.3 2.7 
5 31 22 11 8 6.8 4.8 2.4 1.8 
6 21 12 6 2 6.8 3.9 1.9 0.6 
7 3 1 1 0 1.5 0.5 0.5 0.0 
8 13 10 5 2 5.8 4.5 2.2 0.9 

Phases 1+2 / 
Phases 6+7   

    
5.4 6.3 7.2 18.6 

4.  MJO's impacts on Atlantic basin RI 

 Since predicting TC RI remains one of the great challenges in hurricane forecasting (Sampson et al., 
2011), the knowledge of RI likelihood given what phase of the MJO a particular storm forms in is likely to be 
useful to TC forecasters.  While several studies have examined the impacts of the MJO on Atlantic basin TC 
activity, to the author’s knowledge, no study has explicitly studied RI.    All calculations displayed in the 
following paragraphs are done for systems when the MJO is greater than or equal to one SD.  When the WH 
index is less than one SD, the MJO is likely 
not playing a significant role in altering 
tropical convection.       

Strong relationships are found between the 
MJO and systems forming in the MDR.  Table 
1 displays the number of 24-hour periods for 
each RI threshold for all TCs forming in the 
MDR.  Also provided are normalized values, 
given that the MJO, as defined by Wheeler 
and Hendon (2004), spends more time in some 
phases than in others.     

5. Combined MJO/ENSO impacts on 
Atlantic basin RI 

In order to evaluate the MJO and ENSO in 
combination, the WH index with ENSO and 
the 120-day mean retained is now considered.  
As is the case with the WH index with ENSO 
and the 120-day-mean removed, the WH-
Combined index is divided into eight phases 
spanning the globe.  Since the ENSO phase is 
retained in the WH-Combined index, certain 
phases of the index are preferentially 
experienced during the hurricane season in El 
Niño versus La Niña years.  Significantly 

Fig. 3  Tracks of TCs undergoing an RI of 30 knots or greater 
in 24 hours during (a) Phases 2+3 defined by the WH-
Combined index and (b) Phases 7+8 defined by the WH-
Combined index.  Normalized ratio differences between 
these phases is 38:1. 
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reduced levels of vertical wind shear are observed in Phases 2+3 of the WH-Combined index, while 
significantly increased levels of vertical wind shear are observed in Phases 7+8 of the WH-Combined index.     

As would be expected given the dramatic changes in vertical shear, the largest differences are observed 
between Phases 2+3 and Phases 7+8.  All differences in the mean between Phases 2+3 and Phases 7+8 are 
statistically significant at the 1% level for systems forming in the MDR.  The difference in means are 
somewhat greater when the WH-Combined index is considered compared with the WH index by itself, 
indicating that considering both the MJO and ENSO in combination can provide extra signal compared with 
either the MJO or ENSO by itself.  The difference between Phases 2+3 and Phases 7+8 is emphasized when 
displaying tracks for all TCs undergoing a 30-knot or greater RI during 24 hours (Figure 3). 

6. Summary and future work 

This paper showed the strong impact that both the MJO and ENSO have on RI episodes in the Atlantic 
basin.  It began by examining ENSO's impacts on Atlantic basin RI and demonstrated that RI is much more 
frequent in La Niña events than in El Niño episodes with neutral ENSO events having RI frequency between 
cold and warm episodes.  Given these relationships, RI episodes were then demonstrated to occur much more 
frequently in MJO Phases 1+2 than in MJO Phases 6+7, with other phases of the MJO showing relationships 
between these two extremes.  When the MJO and ENSO were combined using the WH-Combined index, 
even stronger relationships were demonstrated.     

The most conducive phases for RI in the Atlantic MDR occur when deep convective anomalies occur 
over the tropical Indian Ocean.  Associated with these deep convective anomalies in the Indian Ocean are 
increased mid-level moisture and reduced vertical wind shear in the tropical Atlantic, both of which are 
critical factors for RI.  When deep convective anomalies are concentrated over the central and eastern tropical 
Pacific, the Atlantic MDR tends to be drier and have enhanced vertical wind shear, which reduces the 
likelihood of RI.     

One area of current research is determining whether incorporation of the daily MJO index would improve 
the skill of the Statistical Hurricane Intensity Prediction Scheme (SHIPS) (DeMaria et al., 2005) or the 
recently-developed revised rapid intensity index (Kaplan et al., 2010).  This statistical model typically 
provides the best real-time forecast guidance for the National Hurricane Center, and consequently, any 
improvements to the SHIPS model could help prevent loss of life and property.  Additional avenues for 
research include examining other ways of combining the MJO and ENSO to maximize skill.  The impact of 
the MJO and ENSO on RI in other global TC basins will also be investigated.   
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ABSTRACT 

Forecasts for extremes in short term climate (monthly means) are examined to understand our current 
prediction capability and potential predictability.  This study focuses on 2 m surface temperature and 
precipitation extremes over North and South America, and sea-surface temperature extremes in the Niño3.4 
and Atlantic hurricane Main Development regions, using the Climate Forecast System (CFS) global climate 
model, for the period of 1982-2010.  The primary skill measures employed are the anomaly correlation (AC) 
and root-mean-square error (RMSE). The success rate of forecasts is also assessed using contingency tables.  

The AC, a signal-to-noise skill measure, is 
routinely higher for extremes in short-term 
climate than those when all forecasts are 
considered.  While the RMSE for extremes also 
rises, especially when skill is inherently low, it is 
found that the signal rises faster than the noise.  
Permutation tests confirm that this is not simply 
an effect of reduced sample size.  Both 2 m 
temperature and precipitation forecasts have 
higher anomaly correlations in the area of South 
America than North America; credible skill in 
precipitation is very low over South America and 
absent over North America, even for extremes. 
Anomaly correlations for SST are very high in 
the Niño3.4 region, especially for extremes, and 
moderate to high in the Atlantic hurricane Main 
Development Region. Prediction skill for 
forecast extremes is similar to skill for observed 
extremes.  Assessment of the potential 
predictability under perfect-model assumptions 
finds that predictability and prediction skill have 
very similar space-time dependence.  While 
prediction skill is higher in CFS version 2 than in 
CFS version 1, the potential predictability is not. 

This work has been published in the Journal 
of Climate in 2012. 
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Fig. 1  CFSv2 2 m temperature anomaly correlations over 
North America, expressed as a function of the target 
month(horizontal) and lead (vertical), for a) all cases, 
b) when the model predicts an extreme, defined as +/- 
1.645 local standard deviation, c) all cases with 
CV3RE applied (Cross-validation when three years 
are excluded. See the paper for details.), and d) 
predicted extremes with CV3RE applied.  (From 
Becker et al. 2012) 
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1. Introduction 

 Large-scale atmospheric circulation is linked to surface climate variables, such as temperature and 
precipitation. Indices of El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and 
the Pacific North American (PNA) pattern have also been shown to influence surface climate (i.e. Beltaos and 
Prowse 2009; Shabbar et al. 2011).  Although knowledge about atmosphere-surface links and teleconnection-
surface links exist, less is known about how teleconnections influence characteristics of atmospheric 
circulation.  

Fig. 1  Synoptic classification using SOM.  Daily patterns of 500 hPa gph for 1949-2011 snow accumulation 
season (Nov-Apr).  The array of synoptic maps is used to assess surface climate variables across the entire 
study region. 
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Winter snow accumulation supplies an important 
water storage component that is released during spring 
freshet and provides the largest contribution to annual 
streamflow on rivers originating on the leeward slopes of 
the Rocky Mountains.  The Liard, Peace, and Athabasca 
Rivers are tributaries to the north-flowing Mackenzie 
River.  The largest source of freshwater to the Arctic 
Ocean is river discharge, and most of the flow on the 
Mackenzie River originates well outside the arctic 
(Serreze et al. 2003).  Magnitude of snowpack and timing 
of snowmelt has implications for river ice dynamics 
(Beltaos and Prowse 2009), Arctic sea ice formation 
(Lammers et al. 2001), and feedbacks to the global climate 
(Lewis et al. 2000).  The east-flowing North 
Saskatchewan, Red Deer, Bow, and Oldman Rivers are 
tributaries to the Saskatchewan River.  Water demand is 
highest during summer months as these rivers are heavily 
allocated for agricultural, municipal, and industrial use, as 
well as used for hydroelectricity generation.  This region 
is subject to routine droughts and pluvials affecting 
seasonal water availability (Shabbar et al. 2011).  
Understanding flow on the Mackenzie and Saskatchewan 
Rivers requires knowledge of the headwater source region, 
specifically snow regimes of the Rocky Mountains and 
links to the controlling atmospheric conditions, including 
synoptic climatology.  This research represents a brief 
synopsis of a larger study evaluating the atmospheric 
drivers of water availability on rivers originating on the 
leeward slopes of the Rocky Mountains in Canada, and 
will contribute to our understanding of the climatic 
redistribution of western Canadian water resources. 

2.  Data and methodology 

 To assess the characteristics of dominant 
synoptic circulation patterns as they relate to the 
spatial and temporal distribution of water availability, 
daily mid-tropospheric circulation patterns at 500 hPa 
geopotential height (gph) for 1949-2011 snow 
accumulation seasons (Nov-Apr) were classified 
using self-organizing maps (SOM), an iterative 
training process that uses competitive and 
cooperative learning to cluster and project data onto 
an organized output array (Kohonen 2001).  This 
research used the batch algorithm SOM as it was 
determined to be faster and less subjective than the 
sequential algorithm (Kohonen 1999; Liu and 
Weisberg 2005; Jiang et al. 2011).  Daily values of 
PNA, and monthly values of the Southern Oscillation 
Index (SOI) (representing ENSO), and PDO were used to calculate a 3-month (DJF) mean.  The 
mean value was used to classify winters into positive or negative SOI, PDO, and PNA to evaluate 
changes in frequency.   

Fig. 2  Synoptic pattern persistence. 

Fig. 3  Synoptic pattern trajectory. 

Fig. 4  Average PNA value corresponding to 
each synoptic type. 
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3. Results  

Daily synoptic circulation patterns were classified into 20 types (Figure 1).  Persistence (Figure 2) 
represents the percentage of occurrences where the pattern is followed by the same pattern the following day.  
Trajectory (Figure 3) represents the preferential pattern shifts, which occurs primarily around the outer edge 
of the SOM array.  

The average PNA value 
associated with each 
synoptic pattern was 
calculated (Figure 4), and 
indicates a clear pattern of 
strongly negative PNA in 
the far left column and 
strongly positive PNA in the 
far right column, a function 
of the organizational 
qualities of the SOM.  
Patterns 1-4 in the far left 
column of the SOM array 
were also determined to 
occur with a greater 
frequency during negative 
phases of PDO and positive 
phases of SOI, and patterns 
17-20 in the far right column 
were found to occur with a 
greater frequency during positive phases of PDO and negative phases of SOI (Figure 5).  Frequency 
differences for PDO, SOI, and PNA were assessed individually, with similar results.  The strongest frequency 
relationships were found when isolating seasons that fit the criteria of coupled teleconnection phases, such as 
positive PDO, negative SOI, and positive PNA. 

Synoptic types 1-4 are associated with higher precipitation and lower temperatures throughout the study 
region.  A ridge of high pressure centred over the Pacific Ocean results in the advection of cold arctic air 
south across the Rocky Mountains.  Synoptic types 17-20 are associated with lower precipitation and higher 
temperatures.  These patterns are characteristic of high pressure over the continent and a strong Aleutian Low 
in the North Pacific Ocean. 

4.  Discussion and future work 

 Numerous studies have described the influence of teleconnections on surface climate; few have 
addressed the impacts of teleconnections on synoptic-scale circulation.  Synoptic types 1-4 and 17-20 were 
determined to experience the greatest influence from teleconnection phases, as well as exerting the greatest 
influence on surface climate variables.  During negative phases of PDO, positive phases of SOI, and negative 
phases of PNA, mid-tropospheric circulation is expected to favour high pressure ridging over the Pacific 
Ocean and result in higher precipitation and lower temperatures.  During positive phases of PDO, negative 
phases of SOI and positive phases of PNA, mid-tropospheric circulation is expected to favour high pressure 
over the continent and a strong Aleutian Low over the North Pacific Ocean.  These patterns of mid-
tropospheric circulation result in lower precipitation and higher temperatures on the leeward slopes of the 
Rocky Mountains. 

Future work includes statistical time series trend analysis of synoptic type frequency to determine 
significant increases or decreases over time.  Further work to evaluate the spatial distribution of association 
with surface climate across the study area will be completed using a gridded dataset of daily values of 
precipitation and temperature at 10km resolution. 

Fig. 5  Frequency (%) of occurrence for each synoptic type during negative 
PDO coupled with positive SOI, and positive PDO coupled with negative 
SOI. 
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1. Introduction 

 The Madden–Julian Oscillation (MJO; Zhang 2005) influences weather patterns around the globe with its 
30–60 day period. Recent studies have shown that it can influence temperature and precipitation patterns over 
North America (Becker et al. 2011; Zhou et al. 2012). These impacts are frequently diagnosed using the 
Wheeler–Hendon (2004) Real-time Multivariate MJO (RMM) index. The eastern United States tends to be 
warm when the MJO’s enhanced convection is over the western Pacific (phases 5/6) and cold when that 
convection is over the Western Hemisphere and Africa (phase 8/1).  

These impacts are driven by interactions between the MJO’s tropical convection and extratropical 
weather patterns like the Arctic Oscillation, the North Atlantic Oscillation, and the Pacific/North American 
(PNA) teleconnection (Riddle et al. 2012 and references therein). Naturally not every MJO event produces the 
same extratropical response. This project develops a new index, the Multivariate PNA (MVP), to discern 
which MJO events will affect North American temperatures and which will not. 

2.  Data 

Outgoing longwave radiation (OLR) from the 
NOAA polar-orbiting satellites will be used here as a 
proxy for the tropical convection associated with the 
MJO. The extratropical responses will be identified 
using streamfunction, geopotential heights, and 
temperatures from the NCEP–DOE Reanalysis 2. Both 
datasets were obtained from NOAA/ESRL/PSD. Only 
dates from December–February 1979/80–2010/11 are 
used.     

3.  Constructing the MVP 

 When the MJO affects North American 
temperatures, the tropical convective heating forces a 
Rossby wave train. For that reason, we use a combined 
empirical orthogonal function (EOF) of outgoing 
longwave radiation (OLR) and streamfunction at 850 
hPa and 200 hPa. This combined EOF is calculated 
using data that have been filtered for 20–100 days to 
focus on the MJO time scale. Such data is difficult to 
produce in near-real time, so we project the filtered 
EOF onto unfiltered data to produce the principal 
component time series. 

Figure 1 illustrates the resulting EOF loading 
pattern. The 200-hPa streamfunction (top panel) shows 

Fig. 1 EOF loading pattern for 200-hPa 
streamfunction (top), 850-hPa streamfunction 
(middle), and OLR (bottom). 
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a wave train pattern originating in the tropical Pacific, crossing North America, and then descending back to 
the tropical Atlantic. This pattern is reminiscent of the conventional PNA pattern, although the waveguide in 
the new index is shifted 5°–10° latitude farther south. The new index has a 0.57 correlation with the PNA 
from NOAA’s Climate Prediction Center (NOAA/CPC). To reflect this connection, the new index is dubbed 
the “Multivariate PNA” (MVP) index. 

At 850-hPa (middle panel), the streamfunction shows the low-level reflection of the wave train, along 
with anomalous zonal flow near Hawaii. The OLR pattern identifies anomalous convection near Hawaii that 
extends to the southwestern United States, like the familiar “pineapple express.” Three opposite-signed OLR 
anomalies are also found to the north, east, and west.	 

4.  North American impacts 

 As noted before, we expect to see 
warmth over the eastern United States 
when the RMM is in phase 5 and cold in 
phase 8. Figure 2 illustrates how we can 
use the MVP to discern which MJO 
events will produce these impacts. It 
shows composite anomalies of 850-hPa 
temperatures (shading) and 500-hPa 
geopotential height for phases 5 (top) and 
8 (bottom). The composites are 
subdivided by the MVP. Days where the 
MVP ≤ −0.75 are on the left, −0.75 < 
MVP < +0.75 are in the middle, and 
MVP ≥ +0.75 are on the right. In each 
case, the anomalies are averaged for the 
pentad centered 8 days after the 
composite date to show the predictive 
potential.  

As discussed before, warm 
anomalies are generally associated with 
phase 5, but the top row of Fig. 2 shows 
that these anomalies are only observed 
for MVP ≤  −0.75. When the MVP is 
neutral or positive, that warm signal 
disappears. Conversely, the bottom row 
shows that the cold in Phase 8 only 
occurs for MVP ≥ +0.75. The signal is 
absent for the neutral and negative 
phases. The number of dates used for 
each composite is shown in the upper 
right. Note that for both RMM phases, 
the MVP is relatively equally distributed 
among positive, negative, and neutral.	 

 Figure 3 repeats the composite 
analysis using NOAA/CPC’s PNA index, which does not show the same sensitivity. For phase 5, the largest 
warm signal occurs when the PNA is neutral, which accounts for 69% of the days. A weaker signal is found 
when the PNA is negative, and none when it is positive. For phase 8, cold signals are observed for both the 
positive and neutral PNA composites. The negative PNA is actually associated with a warm signal over the 

Fig. 2  Composite anomalies of 850-hPa temperature (shading) 
and 500-hPa geopotential height (contours) averaged 6–10 
days after the RMM is > 1.0 and in phase 5 (top) or phase 8 
(bottom). The composite dates are further subdivided by days 
when MVP ≤ −0.75 (left), −0.75 < MVP < +0.75 (middle), 
and MVP ≥ +0.75 (right). Only temperature anomalies that 
are 95% significant are shaded. Geopotential height 
anomalies are contoured every 20 m. 

Fig. 3  As in Fig. 2, but subdivided by PNA ≤ −0.75 (left), −0.75 
< PNA < +0.75 (middle), and PNA ≥ +0.75 (right). 
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southeastern United States and a cold 
signal over northwestern North America. 
However, this composite accounts for only 
9% of the total days in phase 8.    

Since the MVP is focused on the 
North Pacific basin, it could be influenced 
by the El Niño–Southern Oscillation 
(ENSO). To investigate this possibility, 
Fig. 4 shows the number of days per year 
where the RMM is in phase 5 (top) or 
phase 8 (bottom) and the MVP is ≥ +0.75 
(red) or ≤ −0.75 (blue). Some degree of 
interannual variability is apparent, most 
notably the large number of negative MVP 
events in phase 8 during 1991/92. 
However, if ENSO were a driving factor, 
then significant ENSO years like 1982, 
1997, and 1998 would stand out.	 

 5.  Summary and future plans 

This study proposes a new index, the 
MVP, for identifying which MJO events 
will influence North American temperatures and which will not. This index is based on a combined EOF of 
20–100 day filtered OLR and streamfunction at 850 hPa and 200 hPa. Composites indicate that the warm 
anomalies in phase 5 are strongly associated with the MVP being negative, while the cold anomalies in phase 
8 occur with a positive MVP.     

The MVP is related to the conventional PNA, but the PNA is unable to replicate these signals. There are 
several possible explanations: 

1) The MVP more explicitly incorporates the MJO’s diabatic heating by including OLR. 
2) The wave train in the MVP is shifted 5°–10° southward, which might be associated with more 

persistent temperature patterns. 
3) The phase of the PNA is too closely related to that of the MJO to provide enough null cases that lack 

the expected temperature signals. 

For these reason, the MVP seems to be more useful for identifying the MJO’s impacts over North America. 

A logical next step will be to determine why some MJO events produce a response over North America 
while others do not. Preliminary results suggest that the convective anomaly near Hawaii in the bottom panel 
of Fig. 1 might play an important role. This convection may be associated with anti-cyclonic wave breaking 
from the extratropics. Therefore, further research is required to determine whether the convection is driving 
the circulation or vice versa. 

Acknowledgements. Schreck received support for this research from NOAA’s Climate Data Record 
(CDR) Program through the Cooperative Institute for Climate and Satellites-North Carolina (CICS-NC). 
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ABSTRACT 

This study presents initial findings on a link between inter-annual variability in atmospheric 
circulations over the North Atlantic and precipitation over the African Sahel (PS).  Our analysis shows 
that a meridionally stratified circulation wave train resembling the East Atlantic (EA) mode has a 
pronounced connection with PS, and that the Climate Forecast System version 2 (CFSv2) fails to 
depict this EA mode and its PS impact.  Since the EA mode explains about 20% of variance of PS, our 
analysis result is suggestive of a comparable portion of PS variability that is missing in CFSv2 
operational forecast. 

1. Introduction  

 The African Sahel, a semi-arid 
region lying along the southern edge of 
the Sahara Desert, is characterized by 
large climate variability in summer 
precipitation on the inter-annual and 
inter-decadal time scales.  The El 
Nino-Southern Oscillation (ENSO) is 
known as an important modulator of 
the Sahel summer precipitation (PS) 
(e.g., Joly and Voldoire, 2009).  Other 
climatic forcing factors that modulate 
PS include sea surface temperature 
(SST) anomalies in the Indian Ocean 
(Bader and Latif, 2003) and the 
tropical Atlantic (Brandt et al., 2010).  
These previous findings were mainly 
based upon the concept of SST-driven, 
tropically confined teleconnections 
affecting PS.  By comparison, the 
process of a mid-latitude influence on 
the Sahel climate has drawn much less 
attention, possibly because of the 
prominent Sahara heat low and the 
robust mid-level African high (e.g., 
Chen 2005) potentially blocking any 
teleconnection influences originating 
from higher latitudes.  

Most of the mid- to high-latitude 
climate oscillations, such as the North 

Fig. 1  Composite differences of geopotential height over the years 
1950-2010 for (a) La Nina summers (normalized Nino3.4 index 
< -1) minus El Nino summers (normalized Nino3.4 index > 1), 
and (b) wet summers (normalized PS > 1) minus dry summers 
(normalized PS < -1) during ENSO-Neutral years (normalized 
Nino3.4 index between -1 and 1).  Precipitation data were 
obtained from the PREC/L.  Red box indicates the Sahel region.  
Stippling indicates statistical significance of 95% per t-test.  

200 mb 200 mb 

600 mb 600 mb 

850 mb 850 mb 

a) b)
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Atlantic Oscillation (NAO; Hurrell et al., 2003), are predominately winter phenomena, even though their 
presence and effects during summer months have been studied (e.g., Folland et al., 2009).  For the Sahel 
region, Chen and Wang (2007) noticed a connection between PS and an atmospheric short-wave train in the 
North Atlantic during active ENSO years.  In this study, we show a meridional wave train pattern that 
connects PS with a possible higher latitude influence, regardless of the state of ENSO.  Our analysis indicates 
that such a North Atlantic wave train is linked to the so-called East Atlantic (EA) mode, first identified by 
Barnston and Livezey (1987) as a center of anomalous 700mb geopotential height off the coast of Ireland with 
wave-like disturbances downstream across Europe.  More importantly, we report that this EA-PS linkage is 
missing in one of the major climate forecast models, hence representing missing variability of PS in seasonal 
climate prediction.  

This study utilized the National Center for Environmental Prediction (NCEP)/National Corporation for 
Atmospheric Research (NCAR) Reanalysis I (Kalnay et al., 1996) for atmospheric data.  Rain gauge 
observations compiled and gridded by the National Oceanic and Atmospheric Administration (NOAA) 
precipitation reconstruction over land (PREC/L, Chen et al., 2002) were used.  We also analyzed the Global 
Precipitation Climatology Project (GPCP, Adler et al., 2003), which synthesized rain gauge and satellite 
derived precipitation after 1979.  The reforecast outputs (or hindcast) from the NCEP Climate Forecast 
System version 2 (CFSv2, Saha et al., 2012) were examined for the forecast skill of PS.  Our primary focus is 
inter-annual variability after 1979; hence, all data after 1979 have been linearly detrended to remove long-
term variability.  Hereafter the term PS and all other analyses are focused on the July-September (JAS) season.  
PS was defined as the average precipitation within 12°-20° N and 15° W-30° E.  Precipitation and various 

Fig. 2   (a) Second EOF of the 600mb geopotential height during the JAS season over the years 1979-2010.  
(b) Normalized second PC time series (black) and the normalized JAS PS (green).  (c) One-point 
correlation map between PC2 time series and PS; stippling shows significance of 95% per r-test.  (d) 
Sliding correlations of 11-year window between PS and Nino-3.4 (red) and PC2 (blue); the horizontal 
dashed line indicates significance at 95%.

a) b)

c) d)
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climate indices used in the following analyses 
were normalized for ease of comparison between 
observational and model data.  

2.  The North Atlantic influence on PS 

2.1 Empirical evidence 

The well-known ENSO influence on PS is 
illustrated in Fig. 1a by the composites of 
geopotential height anomalies during ENSO-
active years, i.e. La Nina minus El Nino years 
based on normalized JAS Nino-3.4 index less 
than -1/greater than 1. These composites reflect 
the resultant wet conditions in the Sahel. During 
ENSO-active years, the largest anomalies appear 
at 200mb over the Mediterranean Sea and North 
Africa, with considerably weaker amplitudes 
occurring at lower levels.  During La Nina (El 
Nino) events, the circulation anomalies result in 
increased (decreased) strength of the tropical 
easterly jet (TEJ) and enhanced (suppressed) 
divergence aloft, which in turn enhances 
(suppresses) convection over the Sahel and West 
Africa (e.g., Nicolson and Grist 2001).  By 
comparison, the composite circulation anomalies 
between anomalous rainfall years (wet minus dry, 
using years when |normalized PS| > 1, using 
PREC/L data), computed during ENSO-neutral 
years in which the absolute values of normalized 
Nino 3.4 index are less than 1, portray a quite 
different circulation pattern (Fig. 1b).  First, 
substantial circulation anomalies leading to wet 
conditions in the Sahel (without the ENSO 
influence) are persistent throughout the lower 
troposphere.  Second, there is a northwest-
southeast oriented wave train extending from 
Greenland to North Africa, particularly at 600mb.  
The “center of action” of this wave train appears 
to be the pronounced negative anomaly west of 
Ireland  

 The meridional wave train pattern revealed in Fig. 1b is suggestive of a teleconnection influence 
emerging from higher latitudes on PS.  To examine the extent and origin of this wave train, we first conducted 
the Empirical Orthogonal Function (EOF) analysis on the 600mb geopotential height for the JAS seasons 
spanning 1979-2010 over the North Atlantic region as outlined in Fig. 2a.  Shown in Fig. 2a is the second 
EOF that resembles the EA pattern (Barnston and Livezey 1987) as well as the composite wave train in Fig. 
1b.  This result is in agreement with the EOF leading modes of summertime sea level pressure by Folland et 
al. (2009); i.e. their EOF1 was the NAO and EOF2 was an EA-like pattern.  What was not shown in Folland 
et al.’s analysis, however, is the significant correlation of the second principal component (PC2) with PS, as is 
evidenced in Fig. 2b (r=0.43).  By contrast, the NAO (i.e. PC1) does not reveal any significant correlation 
with PS (r = -0.07). 

Based upon their correlations during the period 1979-2010, ENSO explains 26% of the variance of PS 
while PC2 explains 19%.  Spatial correlations between PC2 and GPCP precipitation (Fig. 2c) show 

200 mb

600 mb

850 mb

Fig. 3  Same as Fig. 1b but for 1979-2010 and with the 
Rossby wave activity flux (W) vectors.  Vectors with 
the length smaller than 1 m2 s-2 were omitted. 
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significant responses across the Sahel region (boxed area).  The precipitation correlations also reveal a north-
south stratified structure that corresponds to the EOF2 (or EA) pattern.  To examine the connection of PC2 
with prominent climate modes, we computed the correlations of PS with other common climate indices 
including ENSO, the Arctic Oscillation (AO), the Pacific-North American Pattern (PNA), the Atlantic 
Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO), obtained from the NOAA 
Climate Prediction Center (CPC; http://www.cpc.ncep.noaa.gov/data/teledoc/). The results showed that PC2 
is independent of all these climate oscillations.  Moreover, only ENSO and PC2 are significantly correlated 
with PS. 

According to Barnston and Livezey (1987) and the CPC, which provides the EA index 
(http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml), the EA index was determined using the EOF analysis 
over the entire Northern Hemisphere (rather than the North Atlantic domain as in this study).  Because EOF 
analysis is sensitive to geographic domain and dataset differences, a point-based EA index approach was 
utilized here.  Based upon the EOF2 pattern as shown in Fig. 2a, we selected three geographical locations and 
applied the following formula: 

EA = Z600 (5ºN, 15ºE) – 3 * Z600 (55ºN, 22.5ºW) + 2 * Z600 (30ºN, 20ºE),                            (1) 

where Z600 is the 600mb geopotential height in the JAS season.  This point-based EA index correlates strongly 
with the PC2 time series (r=0.924) and its spatial correlation with precipitation is essentially unchanged (not 
shown).  Hereafter we refer to EA as the index built from Eq. (1), rather than PC2. 

The relationship between PS and EA was further examined by computing an 11 year sliding correlation, as 
shown in Fig. 2d by the center year.  The linear trend within each 11-yr window was removed prior to 
computing the correlation to minimize the impact from inter-decadal variability.  The sliding correlation of 
EA with PS varies widely over time at roughly a 25 year timescale and has declined in the recent decade.  The 
timing of this low-frequency variation does not correspond to that of either the AMO or the PDO.  By 
comparison, the correlations between ENSO and PS are relatively stable.  A similar stabilization effect has 
been observed between ENSO and the all-India monsoon indices, in which the low-frequency fluctuations 
common in the sliding correlations between two random climatic time series are suppressed (Gershunov et al. 

c)  EOF1 (CFSv2 0‐month) 

a)  EOF1 (NCEP1) b)  EOF2 (NCEP1)

d)  EOF2 (CFSv2 0‐month) 

Fig. 4  EOF analysis of the 600mb geopotential height of (a) EOF1 of NCEP1, (b) EOF2 of NCEP1, (c) EOF1
of CFSv2, and (d) EOF2 of CFSv2 at 0-month lead forecast. 
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2001).  At this point we do not have evidence to rule out the possibility that the fluctuating EA-PS correlations 
are stochastic noise, and not a realization  of multidecadal modulations. 

2.2 Dynamical inference  

Having established an empirical connection between EA and PS, we next explored the dynamic 
mechanism of this connection by analyzing the horizontal-component Rossby wave-activity flux (W, derived 
per Takaya and Nakamura, 2001) during EA-active years (i.e. |EA| > 1).  This W vector provides a measure of 
propagation of Rossby wave energy and enstrophy.  Calculation of this wave-activity flux is not dependent on 
spatial or temporal averaging and therefore is suitable for any particular time period (see Takaya and 
Nakamura, 2001 for details).  

As shown in Fig. 3, i.e. the wet-dry composite during ENSO neutral years, the wave-activity flux at the 
upper troposphere (top panel) is mainly zonal in direction and confined to north of 30° N.  In the middle 
troposphere however (middle panel), there is a strong wave-activity flux penetrating into North Africa, 
moving along the downstream portion of the wave train over the Mediterranean Sea.  At lower troposphere 
(bottom panel), the wave-activity flux crosses the Mediterranean into North Africa but does not extend as far 
inland as at 600mb.  This W propagation is consistent with the EA composite (not shown) and is suggestive of 
the forcing mechanism leading to the middle and lower tropospheric circulation patterns associated with the 
Sahelian wet/dry anomalies (Fig. 1b). 

The rather large wave-activity flux over North Africa at 600mb has an implication for regional circulation 
anomalies.  It appears that the mid-level anticyclone that stations itself over the Sahara Desert can be 
modulated by teleconnection emanating from higher latitudes.  This teleconnection may affect the position 
and/or intensity of the African easterly jet (AEJ) which, in turn, regulates the activity of African easterly 

Fig. 5  Spatial correlations of CFSv2 reforecasts (1982-2010) between (a) Nino3.4 index and precipitation, 
(b) Nino3.4 index and the 600mb geopotential height, (c) EA index and precipitation, and (d) EA index 
and geopotential height.  Stippling shows statistical significance of 95% per r-test.  Box shows the 
Sahel region. 

a) b)

c) d)
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waves (AEWs) (Chen, 2006).  Since AEWs form at both sides of the AEJ core (Chen 2006) it is possible that 
this injection of Rossby wave-activity energy modulates the middle-level anticyclone and the AEJ, as well as 
the development of these AEWs, thereby influencing PS.  Further investigation is needed for the dynamic 
processes of this documented EA-PS teleconnection.  

3.  Forecast skill for EA 

 An important question derived from the aforementioned finding of the EA-PS connection lies in its 
depiction in climate prediction, that is, how well do operational climate forecast models capture EA and its 
impact on PS?  Here we tested hindcast output from CFSv2 to evaluate the model’s performance.  Following 
the observational analysis in Fig. 2, we first conducted an EOF analysis on the 600mb geopotential height of 
CFSv2 at zero-month lead time.  The loading patterns and time series for the EOFs were substantially 
different from those of the NCEP reanalysis data (Fig. 4a-b).  Both EOF 1 and 2 (Fig. 4c-d) of CFSv2 exhibit 
a distinct zonal loading pattern, with considerably smaller magnitude and a north-south – rather than 
northwest-southeast – orientation as in the reanalysis data.  CFSv2 apparently does not reproduce the EA, 
signified by the very low temporal correlation of -0.16 at 0-month forecast and essentially no correlation at 3-
month forecast (r=0.01).  Apparently, the EOF approach to define EA as was used in Barnston and Livezey 
(1987) and the CPC is not suitable for the analysis of CFSv2 outputs, hence justifying the use of the point-
based EA index.  

In terms of ENSO, the CFSv2 performs well in reproducing the Nino-3.4 index (r=0.97) and reasonably 
captures PS (r=0.78) at 0-month forecast.  At forecast month 3, CFSv2 still has a robust correlation of 0.81 for 
Nino-3.4, but the correlation of PS forecast drops to 0.33.  When we consider spatial correlations between 
modeled ENSO/EA and PS in CFSv2 at 0-month lead forecast (Fig. 5a/c), PS responds as expected to modeled 
ENSO forcing.  However, there is essentially no connection between forecast precipitation and forecast EA in 
the Sahel.  Spatial correlation with the 600mb streamfunction (Fig. 5b,d) shows that modeled circulation 
response to ENSO forcing is a reasonable approximation to that of observational data (Fig 1a), but the EA 
wave pattern does not reveal the same sign of circulation anomalies over North Africa, hence the insignificant 
precipitation response in CFSv2 (Fig. 5c).	  

4.  Summary 

CFSv2 has been improved in terms of forecasting ENSO, particularly SST evolutions in the Nino 3.4 
region (e.g., Wu et al. 2009).  This is a promising step in forecasting the well-established connection between 
ENSO and PS.  Correspondingly, modeled PS responds appropriately to ENSO forcing through the first few 
forecast months. However, there is a discrepancy in the variability of atmospheric circulations in the North 
Atlantic and North Africa between CFSv2 and observational data, in that EA is not captured at all even at 0-
month forecast.  Therefore, an important portion (~20%) of the PS variance will be missing in CFSv2 
forecasts.  Since EA is predominately a winter mode (whereas this study only considers the summer season), 
an examination of model performance in atmospheric variability during the winter season could help to 
determine if this deficiency of forecasting EA is seasonal in nature, or is intrinsic to CFSv2 regardless of 
season. 

In addition to its known connection with ENSO, PS is significantly and positively correlated with EA.  
During the positive phase of EA, transport of Rossby wave activity brings energy from the mid-latitudes into 
North Africa at the middle troposphere where the core of the AEJ is located.  CFSv2 fails to capture this 
higher-latitude variability mode, but forecasts reasonably the state of ENSO and the associated Sahel 
precipitation anomalies up to 3 months.  In future work we will further explore the dynamical implications for 
the connection between PS and this atmospheric/EA mode.  We will also seek an explanation for the 
multidecadal fluctuations of EA’s influence on PS. 
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1. Introduction 

 The Brewer-Dobson circulation (BDC) has important implications for global climate. It influences 
temperatures and concentrations of ozone and water vapor throughout much of the global stratosphere 
(Brewer 1949; Dobson 1956; Holton et al. 1995; Mote et al. 1996; Shepherd 2007). The purpose of this study 
is to demonstrate that variability in the BDC also has a significant influence on clouds at tropospheric levels 
in two key regions of the atmosphere: the tropical tropopause transition layer (TTL) and the Arctic 
troposphere.  

2.  Data and analysis method 

The analyses exploit five years (June 2006 through April 2011) of remotely sensed cloud incidence data 
derived from the merged CALIPSO/CloudSat dataset (Stephens et al. 2002). The cloud fraction data are 
obtained from the Level 2B Geometrical Profiling-LIDAR product (2B-GEOPROF-LIDAR; version P2R04), 
which combines information from the CloudSat Cloud Profiling Radar (CPR) and CALIPSO lidar.  

Instantaneous relationships between cloud incidence and temperature are assessed using the CloudSat 
European Centre for Medium-Range Weather Forecasts Auxiliary product (ECMWF-AUX). The ECMWF-
AUX product is interpolated to the same spatial and temporal resolution sampled by the CloudSat radar. 
Relationships between cloud incidence and the meteorology on annual and interannual timescales are assessed 
using the European Centre for Medium Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-
Interim; Simmons et al. 2007). 

The deep, equator-pole branch of the stratospheric BDC is driven primarily by planetary scale wave 
breaking in the extratropics (Yulaeva et al. 1994; Holton et al. 1995; Ueyama and Wallace 2010; Zhou et al. 
2012; Grise and Thompson 2012). The planetary wave entering in the extratropical stratosphere can be 
measured by the vertical flux of wave activity in the lowermost stratosphere (e.g., Waugh et al. 1999; 
Newman et al. 2001; Randel et al. 2002a; Polvani and Waugh 2004), which is proportional to the zonal-mean 
meridional eddy flux of heat at 100 hPa: [v∗T∗]100hPa, where the brackets denote the zonal mean and asterisks 
denote the deviation from zonal mean. As the planetary-scale wave-driven BDC has largest amplitude in the 
Northern Hemisphere (NH) and during boreal winter (e.g., Yulaeva et al. 1994; Rosenlof 1995), we focus on 
the wave fluxes averaged poleward of 30°N ([v∗T∗]100hPa, 30−90◦N), and regressions on the wave fluxes are 
centered on the months October–March. The fluxes are calculated from six hourly v and T and then averaged 
to form monthly means.  

As on month-to-month timescales, stratospheric wave driving is correlated with temperatures during both 
the current and subsequent month, we define our index of the BDC as weighted average of ([v∗T∗]100hPa, 30−90◦N) 
formed from the previous and current months values. The corresponding weights are determined via an 
empirical fit of the ([v∗T∗]100hPa, 30−90◦N) time series to lowermost stratospheric temperatures. As noted in 
Ueyama and Wallace (2010), the weights applied to the previous and current months values of [v∗T∗]100hPa, 

30−90◦N are roughly 2 and 1, respectively. That is, the BDC index value for month i is defined as: 

BDC(i) = 2 × [v∗T∗]100hPa, 30−90◦N (i − 1) + 1 × [v∗T∗]100hPa, 30−90◦N (i), 
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where (i) is the current month, and (i − 1) is the previous month. The resulting BDC index time series is then 
standardized so that it is dimensionless. The standardized BDC index is hereafter referred to as BDCNH. 

3.  Results 

 We will first establish the 
robustness of the linkages 
between cloud incidence and 
tropopause temperatures in 
both these regions. We will 
then draw on the inferred 
linkages to motivate and 
support the analyses between 
cloud incidence and 
stratospheric wave driving.  

3.1.   Cloud incidence as a 
function of SST and 
tropopause temperature 

The left and middle panels 
in Figure 1 examine the vertical 
distribution of cloud incidence 
over the tropical ocean as a 
function of sea-surface 
temperature (SST; Fig. 1a) and 
over the tropical ocean and land 
as a function of tropopause 
temperature (Fig. 1b). The right 
panel examines the vertical 
distribution of cloud incidence 
as a function of tropopause 
temperatures over the Arctic 
poleward of 60ºN (Fig. 1c). 
The key results in Figure 1 are 
strong linkages between 
tropopause temperatures and 
upper tropospheric clouds at 
both tropical and NH polar 
latitudes.	 

The linkages between 
tropopause temperatures and 
upper tropical tropospheric 
clouds (Fig. 1b) are in part due 
to the coherence between 
tropopause temperatures and 
SSTs: regions of anomalous 
SSTs force large-scale 
equatorial waves, and such 
waves influence TTL 
temperatures and cirrus through 
adiabatic motions (e.g., Boehm 
and Lee 2003; Norton 2006; 
Virts et al. 2010). To test the independent relationship between tropical tropopause temperatures and cloud 

Fig. 1  Cloud incidence (shading) as a function of height and (a) sea-surface 
temperature (SST) over the tropical ocean, (b) tropopause temperature 
over the tropical ocean and land, and (c) tropopause temperature over 
the Arctic poleward of 60°N. Results are based on contemporaneous 
relationships between cloud incidence from CloudSat/CALIPSO 
product sea-surface and tropopause temperatures from the ECMWF-
AUX product. The seasonal cycle is not removed from the data. All 
satellite swaths from June 2006 through April 2011 are used.  There are 
a total of more than 2×108 individual profile measurements over the 
tropics, and more than 9×107 individual profile measurements over the 
Arctic. The bin size in all plots is 1 K. 

Fig. 2  Cloud incidence (shading) over the tropical ocean shown as a 
function of SST and tropopause temperature. Results are shown for 
cloud incidence averaged between (a) 15–18 km and (b) 10–15 km. 
Results are based on data for all months of the year, and are focused on 
regions where SSTs are higher than 300 K and tropopause temperatures 
are lower than 198 K. The seasonal cycle is not removed from the data. 
The bin size in all plots is 1 K.  
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incidence, we show in 
Figure 2 the incidences of 
clouds between 15–18 km 
(top) and 10–15 km 
(bottom) as a function of 
sea-surface (abscissa) and 
tropopause (ordinate) 
temperature. The 15 km 
level corresponds roughly to 
the base of TTL (e.g., 
Shepherd 2007; Fueglistaler 
et al. 2009). Cloud 
incidence between 15–18 
km (Fig. 2 top) is clearly a 
much stronger function of 
tropopause temperature than 
of SST, whereas tropical cloud incidence between 10–15 km (Fig. 2 bottom) is a function of both tropopause 
and sea-surface temperature. 	 

3.2 The signature of Brewer-Dobson circulation in TTL cirrus and Arctic tropospheric clouds 

In this section we will build on the relationships between tropopause temperature and cloud incidence 
established in Figures 1–2 to demonstrate a robust link between the stratospheric Brewer-Dobson circulation 
and clouds in both the TTL and Arctic troposphere. The BDC index (BDCNH ) is based on the vertical flux of 
wave activity into the NH extratropical stratosphere during winter and is described in Section 2.  Figure 3 
confirms the coherence between the annual cycles of NH stratospheric wave driving and cloud incidence in 
the TTL, and support Virts and Wallace (2010)’s conclusion that the large-scale BDC plays a central role in 
the seasonal cycle of TTL cirrus.  

Fig. 4  Regressions of zonal-mean (a) temperature, (b) static stability and (c) cloud incidence onto standardized 
monthly-mean values of the anomalous BDCNH index. Results are shown as a function of latitude and 
height and are based on October–March data from June 2006–April 2011. The seasonal cycle has been 
removed from the data. Units are K (temperature) and 10−4s−4 (static stability). The solid black line in (a) 
corresponds to the climatological-mean (October–March) tropopause height. The red and blue lines in (b) 
and (c) indicate the climatological-mean tropopause height plus and minus the regression of tropopause 
height onto the standardized BDCNH index, respectively. 

Fig. 3 Monthly-mean cloud incidence averaged 30°S–30°N and between 15–18 
km (red; scale at right) and the standardized BDCNH index (blue; scale at 
left). The BDCNH index is based on the meridional eddy flux of heat and is 
defined in Section 2.2.  
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Figures 4–5 examine the linkages between the BDC, atmospheric temperatures and tropospheric clouds 
on month-to-month timescales during the NH winter months October–March. Figure 4a shows monthly-mean, 
zonal-mean temperature anomalies regressed on standardized wintertime values of the anomalous BDCNH 
index. The solid black line indicates the climatological-mean (October–March) tropopause height. Periods of 
enhanced wave driving in the extratropical stratosphere are associated with anomalously low temperatures in 
the tropical lower stratosphere and anomalously high temperatures in the polar stratosphere. 

Figure 4b shows the corresponding changes in atmospheric static stability. Here the red and blue lines 
indicate the climatological-mean tropopause height plus (red) and minus (blue) the regression of tropopause 
height onto the wintertime values of the BDCNH index. Periods of enhanced stratospheric wave driving lead to 
1) anomalously high tropopause heights and anomalously low static stability at ∼100 hPa in the tropics 
juxtaposed against 2) anomalously low tropopause heights and anomalously high static stability in the upper 
troposphere/lower stratosphere in the Arctic.	 

Figure 4c shows the corresponding changes in cloud incidence. Month-to-month variability in 
stratospheric wave driving is associated with a distinct pattern of near-tropopause cloudiness. Periods of 
enhanced stratospheric wave driving are marked by anomalously high cloud incidence near the tropical 
tropopause and anomalously low cloud incidence near the Arctic tropopause. The anomalies in tropical cloud 
incidence are limited to the tropopause region, whereas the anomalies in Arctic cloud incidence extend to the 
middle-upper troposphere. 

The linkages between the 
BDC and cloud incidence 
revealed in Fig. 4c also highly 
significant. As shown in Figure 
5, variability in the BDC 
accounts for more than 25% of 
the month-to-month variability 
in cloudiness in both the TTL 
and Arctic troposphere. The 
associated correlation 
coefficients are significant at 
the 99% confidence level based 
on a one-tailed test of the t-
statistics with an effective 
sampling size of 24 (using the 
criterion given in Bretherton et 
al. 1999).  

4.  Concluding remarks 

The planetary-scale stratospheric Brewer-Dobson circulation influences temperatures and static stability 
in the vicinity of the tropopause in both the tropics and Arctic. Periods of enhanced wave driving in the NH 
extratropical stratosphere are marked by lifting and cooling of the tropical tropopause juxtaposed against 
sinking and warming of the Arctic tropopause, and vice versa. Here we exploited ∼5 years of data from the 
CloudSat and CALIPSO instruments to reveal that the influence of the BDC during NH winter extends to 
clouds in both the TTL and Arctic troposphere. The BDC accounts not only for the seasonal cycle in TTL 
cirrus [Fig. 3; Virts and Wallace 2010], but also for ∼25% of the month-to-month variability in cloud 
incidence in both the TTL and Arctic troposphere during NH winter (Figs. 4c, 5). The results reveal a novel 
pathway through which stratospheric processes can influence tropospheric climate. 

The linkages between the BDC and clouds in the TTL and Arctic troposphere are physically plausible and 
statistically robust. Upper tropospheric cloud incidence is linked to variability in tropopause temperatures in 
both the tropics and over the Arctic (Figs. 1, 2). Tropopause temperatures and static stability in both regions 

Fig. 5  Scatterplots of monthly mean values of the anomalous BDCNH index 
(abscissa) and cloud incidence (ordinate). Cloud incidence is averaged 
(a) equatorward of 30° and between 15–18 km and (b) poleward of 
60°N and between 5–10 km. Results are based on October–March data 
from June 2006–April 2011. 
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are, in turn, linked to variability in the BDC (Figs. 4a, 4b). The subsequent linkages between variability in the 
BDC and clouds in the TTL and Arctic troposphere are significant at the 99% level (Fig. 5). 

The linkages between the BDC and clouds in the TTL and Arctic troposphere have potential implications 
for both climate change and the ability of models to simulate such change. Climate change simulations reveal 
robust increases in the strength of the BDC in response to future increases in greenhouse gases (e.g., Butchart 
and Scaife 2001; Butchart et al. 2006; Li et al. 2008; Garcia and Randel 2008; McLandress and Shepherd 
2009; Butchart et al. 2010), and at least some observations suggest that such changes have already occurred 
(Thompson and Solomon 2009; Hu and Fu 2009; Young et al. 2012). The changes in cloudiness associated 
with a strengthening of the BDC may have notable radiative effects on both the TTL and Arctic troposphere. 
The radiative effects of the linkages documented here and the ability of climate models to simulate such 
linkages remain to be determined. 
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ABSTRACT 

The effect of El Niño-Southern Oscillation (ENSO) on the frequency and character of Northern 
Hemisphere major mid-winter stratospheric sudden warmings (SSWs) is evaluated using a meteorological 
reanalysis data set and comprehensive chemistry-climate models. There is an apparent inconsistency between 
the impact of opposite phases of ENSO on the seasonal mean vortex and on SSWs: El Niño leads to an 
anomalously warm, and La Niña leads to an anomalously cool, seasonal mean polar stratospheric state, but 
both phases of ENSO lead to an increased SSW frequency. A resolution to this apparent paradox is here 
proposed: the region in the North Pacific most strongly associated with precursors of SSWs is not strongly 
influenced by El Niño and La Niña teleconnections. In the observational record, both La Niña and El Niño 
lead to similar anomalies in the region associated with precursors of SSWs and, consistent with this, there is a 
similar SSW frequency in La Niña and El Niño winters. A similar correspondence between the penetration of 
ENSO teleconnections into the SSW 
precursor region and SSW frequency is 
found in the comprehensive chemistry-
climate models (Fig. 1). The inability of 
some of the models to capture the 
observed relationship between La Niña 
and SSW frequency appears related to 
whether the modeled ENSO 
teleconnections result in extreme 
anomalies in the region most closely 
associated with SSWs. Finally, it is 
confirmed that the seasonal mean polar 
vortex response to ENSO is only weakly 
related to the relative frequency of SSWs 
during El Niño and La Niña. 

This work has been published in 
Journal of Geophysical Research in 2012. 
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Fig.1 (c.f. Figure 5, Garfinkel et al. 2012).  The relationship 
between the ratio of La Niña SSW frequency to El Niño 
SSW frequency (y-axis), and the ratio of La Niña to El Niño 
extreme negative height anomalies in the SSW precursor 
region, for reanalysis and models (each marker represents 
one data source). 
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1. Introduction 

 The multi-institution North American Land Data Assimilation project (NLDAS) has experienced four 
stages since it was initiated in 2000 (Mitchell et al. 2004). The first stage established infrastructure including 
selection of land surface models, generation of surface forcing data, and collection of soil and vegetation 
datasets, and in-situ and satellite-retrieved observations. Four model groups ran their models separately for a 
3-year period (from 1 October 1997 to 30 September 1999). NCEP Environmental Modeling Center’s land-
hydrology group ran the community Noah model, Princeton University’s land group ran the VIC model, 
NASA Goddard Space Flight Center’s hydrology group ran the Mosaic model, and National Weather 
Service’s Office of Hydrologic Development ran the SAC hydrological model. The model outputs were 
evaluated and compared with in-situ observations and satellite-retrieved products. Overall results showed that 
all four models are able to capture broad features for these validated variables such as energy fluxes (e.g., net 
radiation, sensible heat, latent heat, and ground heat), water fluxes (i.e., evapotranspiration, total runoff)  and 
state variables (i.e., soil temperature, soil moisture, land surface temperature, snow cover fraction, snow water 
equivalent). The validation tools and overall results are detailed in Mitchell et al. (2004).  

The second stage focused on improving model physics, tuning model parameters and improving surface 
forcing data quality and reliability based on the findings from the first stage, and further expanding the short-
term (i.e., 3 years) model products to long-term (> 30 years) model products. The NCEP NLDAS team 
improved Noah simulation in cold season (Livneh et al. 2010) and warm season (Wei et al. 2012) through 
collaboration with University of Washington. The Princeton Land group improved the VIC simulation by 
calibrating model parameters (Troy et al. 2008), and the NCEP NLDAS team also improved SAC simulation 
by using climatologically averaged observed potential evaporation (Xia et al. 2012a), while Mosaic was 
improved little. For surface forcing data, the CPC gauge precipitation has been bias-corrected by PRISM 
(Parameter-elevation Regressions on Independent Slopes Model, Daly et al. 1994) precipitation to reduce the 
impact of topography on gauge precipitation. Four models were retrospectively run from 1 January 1979 to 31 
December 2008. After then, they are run in a near-realtime mode (with a 3 and half day lag). 

The third stage moved toward evaluating and validating the quality and reliability of long-term NLDAS 
products using as many as available in-situ observations and satellite-retrieved products (short-term vs. long-
term, different time scales from hourly to annual, different spatial scales from site and basin to continental 
United States). These observations include energy fluxes (e.g., downward shortwave and longwave radiation, 
upward shortwave and longwave radiation, net radiation, sensible heat flux, latent heat flux, ground heat flux, 
etc.), water fluxes (e.g., evapotranspiration, streamflow), and state variables (e.g., soil moisture, soil 
temperature, land surface/skin temperature, snow water equivalent, snow cover fraction). 
Evaluation/validation works have made significant progress during the recent two years. An overall 
evaluation and comparison was detailed in Xia et al. (2012a, 2012b). Overall results show that the NLDAS 
products generated from the stage 2 have better quality when compared to those generated from stage 1, due 
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to both model and surface forcing data improvement. The simulated total runoff was evaluated against the 
observed streamflow at 986 small-medium size basins and 8 large size basins which were measured by the 
U.S. Geological Survey (USGS). In west coast and eastern U.S., all four models are able to capture the broad 
features of observed streamflow. Four- model ensemble mean outperforms any individual model in term of 
errors. The similar conclusion can be found for the validation of simulated evapotranspiration. The simulated 
soil moisture was evaluated using three observational datasets (Xia et al. 2012c): 20-year (1985-2004) 
monthly mean soil moisture from Illinois (17 sites), 6-year (1997-2003) daily mean soil moisture from 
Oklahoma Mesonet (72 sites), and 8-year (2002-2009) daily soil moisture from Soil Climate Analysis 
Network (SCAN, 121 sites) over the continental United States. The results show that simulation skills of all 
four models are quite good in term of anomaly correlation for both daily and monthly time scales although 
simulated soil moisture magnitude shows large errors, where some models may overestimate and other 
models may underestimate observed soil moisture. Like streamflow and evapotranspiration evaluations, the 
four-model ensemble mean shows the most robust simulation skills over continental United States when 
compared to any individual model. 

The focus of fourth stage is to apply long-term NLDAS products to support the National Integrated 
Drought information System (NIDIS, drought.gov) and U.S. operational drought monitoring and prediction. 
One key application of the near real-time NLDAS is its drought monitoring over continental United States, 
shown at the “NLDAS Monitor” tab of the NLDAS website (Sheffield et al. 2012; NCEP/EMC NLDAS 
website: http://www.emc.ncep.noaa.gov/mmb/nldas/; NASA NLDAS website: 
http://ldas.gsfc.nasa.gov/nldas/NLDASnews.php).  At the same time, the NLDAS team also uses a cron job to 
routinely provide four-model ensemble mean daily, weekly, and monthly percentiles of top 1m soil moisture, 
total column soil moisture, total runoff and evapotranspiration to the U.S. drought monitor author group to 
directly support the USDM. This team also provides NLDAS drought indices to support CPC monthly 
drought briefing and seasonal drought outlook. However, these NLDAS drought indices are not 
comprehensively assessed as there are few reference drought datasets. The USDM 
(http://droughtmonitor.unl.edu/), an operational product (Svoboda et al. 2002), has generated many statistics 
(i.e., drought area percentages for the forty-eight states). How to use these statistics to improve U.S. 
operational drought monitoring is still a challenging issue. This study will develop an objectively blended 
approach by establishing the linkage between NLDAS products and USDM statistics. The approach will use 
an optimization method to search for optimally blended weights and equations by minimizing the root mean 
square error (RMSE) between drought area percentage derived from an NLDAS and from USDM.  In turn, 
the USDM drought area percentage will be used to evaluate simulation skills of optimally blended NLDAS 
drought index. 

2.  Methodology 

Weekly drought area percentages were downloaded from the USDM archives website 
(http://droughtmonitor.unl.edu/dmtabs_archive.htm) for five categories and 48 states. This dataset covers a 
12-year period from 2000 to 2011. Five drought categories are from abnormally dry to exceptional (D0-D4), 
moderate drought to exceptional (D1-D4), severe drought to exceptional (D2-D4), extreme drought to 
exceptional (D3-D4), and exceptional (D4-D4). Monthly mean drought percentages were calculated using the 
number of days as weights to average weekly values. For NLDAS, percentiles of monthly mean top 1m soil 
moisture (SM1), total column soil moisture (SMT), evapotranspiration (ET), and total runoff (Q) derived 
from four-model ensemble were used as four  NLDAS drought indices. A linear combination of the four 
indices was used as the blend in this study. We calculated monthly drought area percentage from the blend for 
forty-eight states using land mask, state mask, and the USDM drought categories. 10-year monthly drought 
area percentages were used to construct our error function (the last 2 years were used for validation as the 
USDM authors have referenced NLDAS products since 1 January 2010). The root mean square error E can be 
defined as:  
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where MT is total number of months (120 in this study), C is the number of drought categories (5 in this 
study), ctA , and ctO ,  are the drought percentage area from the blended NLDAS drought index and the USDM, 

respectively. The ranges of all four weights are selected to be from 0 to 1.  By an optimization process, Very 
Fast Simulated Annealing (VFSA, Xia 2007) automatically searches for optimal weights to minimize the 
error function E. The optimization process was performed for each state separately (Xia et al. 2013, 
“Application of USDM Statistics in NLDAS-2:  Objective Optimal Blended NLDAS drought Index over the 
Continental United States”, in preparation for Journal of Geophysical Research). 

The basic evaluation method for this study includes bias, root mean square error (RMSE), correlation 
coefficients, and Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970).  The Nash-Sutcliffe efficiency is 
defined as: 
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In equation (2) tA and tO  are, respectively, drought area percentage derived from NLDAS and USDM, 

and A and O are their mean values for any given time period.  The NSE is a measure of the drought area 
percentage simulation skill of the method as compared to the mean USDM drought area percentage, and 
ranges in value from minus infinity (poor model skill) to one (perfect model skill). An efficiency of 0 
(NSE = 0) indicates that the model simulations are as accurate as the mean of the USDM data, whereas an 
efficiency less than zero (NSE < 0) occurs when the USDM mean is a better predictor than the model.  

Fig 1  Comparison of drought area percentage for D1-D4 derived from USDM and objective NLDAS blend 
(represented State in Fig.1) in (a) Nebraska (NE), (b) Kansas (KS), (c) Texas (TX), (d) Oklahoma (OK), (e) 
Arkansas (AR), (f) Tennessee (TN), (g) Iowa (IA), (h) Indiana (IN), and (i) Kentucky (KY) for January 
2000 to December 2009. 
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3.  Results 

Figure 1 and Figure 2 show the comparison between USDM and NLDAS drought area percentage (D1-
D4) for nine states and different periods: the training period (2000-2009) and the validation period (2010-
2011), respectively. These states have the highest correlation for both training and validation period. The 

Fig. 3  The same as Figure 1 except for (a) Washington (WA), (b) Oregon (OR), (c) Montana (MT), (d) Idaho 
(ID), (e) Wyoming (WY), (f) California, (g) Nevada (NV), (h) Utah (UT), and (i) Arizona (AZ). 

Fig. 2  The same as Figure 1 except for the validation period from January 2010 to December 2011. 
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results show that the objective NLDAS blend can capture variability and magnitude of monthly drought 
events very well for both the training period and validation period although the blend overestimates USDM 
drought area percentage for almost all nine states during the validation period. The performance of the 
objective blend varies from state to state. Basically, most states in Southern and Southeastern U.S. have quite 
good performance, and the states in Northeastern, Midwestern, and Western U.S. have low simulation skills. 
An example for nine states over western U.S. is shown in Figure 3. The objective NLDAS blend shows quite 
low simulation skill over western U.S. regions for both monthly magnitude and variability, in particular for 
Washington and Wyoming. The possible reason may be (1) inaccurate precipitation data and (2) low 
simulation skills for soil moisture, ET and Q (Xia et al. 2012a, 2012b).  As indicated by Mo et al. (2012), the 
number of precipitation gauges has significantly decreased since 2002. Therefore, precipitation estimates may 
be not representative for that region. Moreover, because of complex topography, snow processes, and frozen 
soil processes, combined with inaccurate precipitation over the western mountainous region, further results in 
poor simulation of soil moisture, ET and Q in that region. Figure 4 shows monthly variation of drought area 
percentage for 5 drought categories in three states derived from USDM (left panel) and objective NLDAS 
blend (right panel). The results show that the NLDAS blend quite well captures the monthly magnitude and 
variability of the USDM drought area percentage for these three states, in particular for the first two drought 
categories. The inability of the objective NLDAS blend to capture USDM drought area percentages for severe 
drought or above categories is due to their small sample sizes. Therefore, a long-term USDM product (i.e., 30 
years) can be expected to improve severe drought simulation. The spatial distribution of Nash-Sutcliffe 
efficiency for three drought categories (i.e., D0-D4, D1-D4, and D2-D4) was shown in Fig. 5 for the training 
period (left panel) and the validation period (right panel). The results show that objective NLDAS blend has 
quite good simulation skills in southern and southeastern states, and poor simulation skills in western, mid-
northern, and northeastern states, in particular for the validation period and the severe drought case. The 
simulation skills of objective NLDAS blends are reduced from the training period to the validation period for 
most states. The reduction of the simulation skills also occurs when drought categories vary from D0-D4 to 
D3-D4.  The reason for both reductions may be due to the short record-length of USDM data.  

4.  Summary and future direction 

 Currently NLDAS is a quasi-operational system to support U.S. operational drought monitoring and 
seasonal hydraulic prediction, in particular for the National Integrated Information System including U.S. 

Fig. 4  Comparison of drought area percentages for five drought categories (D0-D4, D1-D4, D2-D4, D3-D4, 
D4-D4) derived from USDM (left panel) and objective NLDAS blend (right panel). The data covers the 
period from January 2000 to December 2011. From top panel to bottom panel represent Iowa (IA), Illinois 
(IL), and Indiana (IN).  
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Drought Monitor (USDM) and Monthly 
Drought Briefing.  Detailed information 
about NLDAS can be found at NOAA 
(http://www.emc.ncep.noaa.gov/mmb/nlda
s) and NASA 
(http://ldas.gsfc.nasa.gov/nldas/) websites.  
The system consists of a retrospective 29-
year (1979-2008) historical execution and 
a near real-time daily update execution 
using four land surface models  
(NCEP/Noah, NASA/Mosaic, 
NWS/OHD/SAC, and VIC developed by 
Princeton University and University of 
Washington) on a common 1/8th degree 
grid using common hourly land surface 
forcing.  The non-precipitation surface 
forcing is derived from the NCEP 
retrospective North American Regional 
Reanalysis (NARR), and now realtime 
NCEP operational Regional Climate Data 
Assimilation System (RCDAS).  The 
precipitation forcing is anchored to daily 
gauge-only precipitation over Continental 
United Sates (CONUS) that applies 
Parameter-elevation Regressions on 
Independent Slopes Model (PRISM) 
corrections.  This daily precipitation 
analysis is then temporally disaggregated 
to hourly precipitation amounts using radar 
products.  The NARR-based surface 
downward solar radiation is bias-corrected 
using seven years (1997-2004) of satellite-
derived solar radiation retrievals. 

The 29-year NLDAS retrospective run is used to derive the climatology of each of the four land models.  
Then current near real-time (past week, past month) land states (e.g. soil moisture, snowpack), and water 
fluxes (e.g. evaporation, total runoff, streamflow) of each of the four models from daily executions are 
depicted as anomalies and percentiles with respect to their own model climatology.  The simulated 
streamflow, soil moisture, snowpack, and evapotranspiration from the four models are well evaluated and 
validated using in-situ observations from the U.S. Geological Survey, Illinois, Oklahoma, and  CONUS soil  
moisture, and evapotranspiration from U.S. surface flux measurement sites.  This evaluation provides a basis 
to apply NLDAS products.  One key application of the near real-time updates is drought monitoring over 
CONUS, shown at the “NLDAS Drought” tab of the NLDAS website.  NLDAS ensemble mean drought 
indices are directly provided to the U.S. Drought Monitor author group through a daily cron job. 

NLDAS has become mature enough and will be implemented in NCEP operations in the near future.  At 
the same time, we recognize that the current NLDAS is not an “actual” land data assimilation system because 
remotely-sensed estimates of land-surface states such as soil moisture and snowpack, and in-situ observations 
such as streamflow and soil moisture, are not yet assimilated into current version of NLDAS.  The 
NCEP/EMC NLDAS team is collaborating with the NASA Goddard Hydrological Sciences Laboratory to add 
their Land Information System (LIS; Kumar et al. 2006) to the current NLDAS system which would allow 
assimilation of remotely-sensed data and in-situ observations, e.g. via an ensemble Kalman filter approach. 

Fig. 5  Spatial distribution of Nash-Sutcliffe efficiency (NSE) 
for three drought categories (i.e., D0-D4, D1-D4, and D2-
D4) and different periods: the training period (left panel) 
and the validation period (right panel). Negative NSE 
indicates poor simulation for USDM drought area 
percentages.   
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The comparison analysis of drought area percentages shows that the objective NLDAS blend is able to 
capture broad features of drought area percentage such as magnitude and monthly variability for the first two 
categories in many states which are mainly located in the South, Southeast, High Plains and Midwest regions. 
However, there is still significant room for improvement for enhancing simulation skills, in particular for 
most states of the Western and Northeast regions, and for the strongest drought events (D3-D4, D4-D4). 
Impact of accurate gauge precipitation on simulation skills in the Western region will need to be addressed in 
the future work by rerunning the four NLDAS models using a retrospective gauge precipitation dataset. In 
addition, after more independent inputs such as observed streamflow (e.g., percentile) from USGS, remote 
sensing drought indices (e.g., Evaporative Stress Index, Ground Water Storage), and Climate Prediction 
Center (CPC) operational drought indices (e.g., standard precipitation index, Palmer Drought Index, Palmer 
Hydrological Drought Index, Objectively Blended Drought Indicators) will be used to blend with the four 
NLDAS drought indices used in this study, further improvement can be expected.  It should be noted that the 
objective NLDAS blend is easily reproducible, which is quite different from the USDM, which is based on a 
combination of objective and subjective analysis, making it not easily reproducible. Therefore, this approach 
can be used to reconstruct long-term drought area percentages and drought indices. 
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Monitoring and Maintenance of a Cold-Season Drought  

Er Lu 

Nanjing University of Information Science & Technology, Nanjing, China,  

and Climate Prediction Center, NCEP/NWS/NOAA, Maryland, U.S. 

1. Introduction 

 A once-in-a-century severe drought swept across Southwest China during fall 2009 and the subsequent 
winter. It made over 16 million people and 11 million livestock short of drinking water, and devastated crops 
in more than 4 million hectares of farmland with making a fourth of them yield no harvest. The goal of this 
study is to monitor the drought at a daily scale and examine the regional atmospheric anomalies that fostered 
the severe drought. 

2. Monitoring the drought at a daily scale 

The weighted average of precipitation (WAP) developed by 
Lu (2009) is used to monitor the drought. The suggested form of 
the index for the general monitoring of drought at a daily scale is 

     



44

0

9.01.0
n

n
n PWAP     

which combines the precipitation (P) of the recent 45 days (n = 0, 
1 , …, 44) with weights that decay with time. Although the 
period-averaged negative anomaly of precipitation (figure not 
shown) can also indicate the drought, WAP can provide more 
details of the drought process. Figure 1 shows that the drought in 
Yunnan and Guizhou, two provinces of the Southwest, is severer-
than-normal almost every day during the long period of the 
drought. 

3. Regional atmospheric anomalies of the cold-season 
drought 

a. Contributions from less water vapor and warmer air 
temperature 

 Atmospheric circulation is important to precipitation; its 
ultimate effect is to increase the water vapor in the local air and 
lower the air temperature, through transporting water vapor and 
invading cold air, and thus make the air become saturated. 

Lu and Takle (2010) concluded, from large spatial samples, a 
tight positive relation between precipitation and relative humidity at interannual timescale. This relation is 
broader than the conventionally recognized water vapor-precipitation link. 

The relative humidity of the 2009-2010 cold-season drought has negative anomaly in the Southwest (Fig. 
2), which reflects not only the role of the less-than-normal water vapor in the region but the effect of the 
warmer-than-normal temperature as well. Their contributions to the drought can be compared with the 
precipitation-relative humidity relation. 

Fig. 1  Daily WAP of the 2009-2010 cold-
season drought (thin) and the climatic 
mean (thick) for Yunnan (upper) and 
Guizhou (lower) Provinces.
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Denote the lower-than-normal relative humidity of 
the drought (Pdry < Pnor) as rdry < rnor, or Dr ≡ rdry/rnor < 
1. With expressing relative humidity r in terms of 
specific humidity q and saturation vapor pressure es at 
temperature T, it can further be written as 

    Dr = Dq DT < 1, 

where 

    Dq ≡ qdry / qnor 

and 

    DT ≡ es (Tnor) / es (Tdry) 

measure the contributions of the less water vapor and 
warmer air temperature to the decrease of relative 
humidity. 

Figure 3 shows that, over the Southwest, Dq 
ranges from 1 to 0.6, whereas DT from 1 to 0.8, and 
their minima both appear in the severest drought area. 
This suggests that at the interannual timescale (i.e., 
comparing this drought year with the normal year), 
while less water vapor contributes more, warmer air 
temperature also contributes significantly to the 
formation of the severe drought. 

b. Changes in atmospheric circulation and water 
vapor transport 

Figure 4 shows that the water vapor transport field 
of the 2009-1010 cold-season drought is pretty similar 
in spatial pattern to the climatic mean, and the major 
difference is in the strength; the vapor transport of this 
drought is weaker than normal across the Southwest. 

Fig. 3  Dq (left) and DT (right) at 600hPa calculated with data of the 2009-2010 cold-season drought and 
the climatic mean. 

This is different from the 1999 summer drought over North China (Ding et al. 2003), during which vapor 
transport has a significant anomaly in the track, and the strength is not weak from the source of vapor and 
along the track. The southwest monsoon transports water vapor along the low latitudes all the way to the east, 
and water vapor cannot reach North China. Since summer is the rainy season of the region, the normal 

Fig. 2  Anomalies of relative humidity (%, top), 
specific humidity (g kg-1, middle), and 
temperature (K, bottom) at 600hPa of the 2009-
2010 cold-season drought, relative to the 
climatic mean. 
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transport of water vapor can lead to much precipitation, 
which sometimes can even form floods. If the vapor 
transport in a particular year is along the normal track 
but just weaker in strength, it can still bring 
precipitation. This precipitation might be less than 
normal, but would be far from forming a severe drought. 
To form severe drought in the summer of the region, the 
transport of water vapor needs to have a significant 
change in track.  

By contrast, the Southwest severe drought analyzed 
in this study maintains mainly in cold season. It is 
normally very hard to form persistent strong 
precipitation at this time of the year. To form severe 
drought in cold season, a weakening in the strength of 
vapor transport can be sufficient, and there is no need to 
have a major change in the transport track. 

c. The higher-than-normal pressure at upper levels 

Figure 5 shows that there is positive anomaly of 
geopotential height at the upper level in the Southwest, 
while negative anomaly at the lower level. Geopotential 
thickness thus has a positive anomaly in the region, 
which manifests the warmer-than-normal air 
temperature of the drought. The dominance between the 
warmer air temperature and the upper-level higher pressure needs to be further analyzed. 

Fig. 5  Anomalies of geopotential height (gpm) at 200 (left) and 925hPa (right) of the 2009-2010 cold-
season drought, relative to the climatic means. 

d. The effect of warmer air temperature on cold-season drought 

In summer, the East Asian monsoon season, water vapor transport and convergence are strong. Making 
the air saturated is easy, even if the air is much warmer than normal. Strong and persistent vapor supply can 
lead to heavy rain and even floods. So, heavy rain and floods in summer are dominated dynamically by the 
atmospheric circulation and the related water vapor transport. 

In cold season, though water vapor transport is weak, light to moderate rains are still expectable. Whether 
air temperature can be low, relative to the season, is key to formation of precipitation. If it is low, weak 
precipitation may form from time to time, which may still efficiently mitigate the drought. Warmer air 
temperature is therefore particularly important to the formation of the cold-season drought. 

Fig. 4  Water vapor transport (g kg-1 m s-1, 
850hPa) of the 2009-2010 cold-season 
drought (upper) and the climatic mean 
(lower). 
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e. The positive feedback in the regional atmosphere 

With weaker water vapor transport and convergence, warmer air temperature is not helpful to the 
saturation of the air, and thus can help bring a clear weather. Whereas the clear weather can in turn warm the 
air through less cloud, stronger solar radiation, and thus more sensible heat from the surface. Such warmer 
temperature - less precipitation positive feedback, an inherent mechanism in the regional atmosphere, can 
facilitate the maintenance of the severe cold-season drought. 

4.  Summary 

 The 2009-2010 cold-season severe drought can be well monitored at a daily scale with the WAP index. 
Water vapor is less than normal during the drought. The atmospheric circulation and water vapor transport do 
not show significant anomalies in the track. To form drought in the cold season, a weakening in the strength 
of vapor transport can be sufficient. Air temperature is much warmer than normal during the drought. Though 
it has less influence on summer precipitation, which is dynamically controlled, air temperature is particular 
important to the formation of cold-season drought. The warmer air temperature in the cold season makes the 
air harder to saturate, and thus harder to form even light rains. Moreover, the warmer temperature - less 
precipitation feedback in the regional atmosphere can facilitate the maintenance of the cold-season drought.   
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1.  Introduction 

 The 2011 
exceptional drought 
over Texas was 
unusual because of its 
rapid intensification 
over the late-
spring/early-summer 
2011. Combined 
reservoir storage 
across the state 
dropped by 20%, and 
more regionally, in 
less than one year. 
Such a rapid 
reduction in reservoir 
storage, in a system 
designed to cope with 
multi-year droughts, 
caught water 
managers by surprise. 
Improved 
predictability of 
drought 
intensification in the 
spring could help 
decision makers, 
tasked with water 
resources 
management, adopt 
suitable measures to 
both reduce 

Fig. 1  Time-longitude plots of (a) sea surface temperature anomalies in the Nino3.4 
region, (b) rainfall anomalies, (c) soil moisture percentiles, (d) evaporation 
anomalies, (e) sensible heat anomalies and (f) 2-meter temperature anomalies 
over Texas. SSTs are from the ERSST2 dataset (Smith et al. 1996) and 
precipitation is from the CPC unified precipitation dataset (Xie et al. 2010). 
Anomalies are calculated from a 1950-2010 climatology. Soil moisture 
percentiles, evaporation and sensible heat anomalies, and 2-meter temperature 
anomalies are from NLDAS based surface hydrology fields available at 

      http://www.cpc.ncep.noaa.gov/products/Drought/Monitoring/. 
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evaporative loss from reservoirs and prepare contingency plans to cope with an impending reduction in water 
supply over the summer.  We investigate factors that led to the spring intensification of the drought with the 
aim of improving drought predictability for Texas.  

2.  Spring intensification of the drought 

La Niña conditions played an important role in the initiation of the drought in the fall of 2010. Rainfall 
deficits over Texas commenced in the fall of 2010 coincident with the La Niña event that began in the 
summer of 2010 and peaked in the fall of 2010 (Fig. 1, panels a-b). The most marked reduction in rainfall and 
soil moisture occurred from April 2011 onwards and peaked in the summer of 2011 (Fig. 1, panels b-c). With 
the reduction in rainfall and soil moisture, there was a reduction in evaporation and an increase in sensible 
heating and surface (2 meter) temperature (Fig. 1, panels d-f). The reduction in evaporation and the increases 
in sensible heating and 2-meter temperatures are also most prominent from April 2011 onwards.  

Why is April an important milestone for the drought event of 2011?  April happens to be the normal start 
of the rainfall season over Texas and, in 2011 we see a drastic reduction in rainfall right at the start of the 
rainfall season. Rainfall in April can be from the passage of frontal systems and from convective storms. 
Therefore, we examined large-scale circulation anomalies induced by La Niña, the local thermodynamic 
environment over Texas and synoptic events as candidate factors driving April rainfall deficits.  

3. Large-scale circulation anomalies induced by La Niña 

The ridge at 500 hPa in April 2011 
over Texas (Fig. 2(a)) was stronger and 
had a more zonal pattern over the Pacific 
compared with the composite pattern of 
500 hPa height anomalies in 23 La Niña 
years from 1949 to the present (Fig. 2(b)). 

4.  Local thermodynamic factors and 
synoptic events 

There was a sudden sharp increase in 
convective inhibition at the end of April 
2011 (Fig. 3 – red line).  An interesting 
feature to note from past intense drought 
events is that there is a similar increase in 
convective inhibition – albeit not as 
strong as in 2011 – in the drought events 
of 1918, 1925 and 1956.  

An examination of lower-

Fig. 2  (a) 500 hPa height anomalies in April 2011 and (b) 500 hPa height anomaly composite in 23 La Niña 
years. Dataset used is NCEP-R1 (Kistler et al. 2001) with 1981-2010 climatology. Zonal means have 
been removed. 

Fig. 3   Pentadal convective inhibition (CIN) in 2011 (red), mean 
convective inhibition in drought years of 1918, 1925 and 
1956 (orange) and mean convective inhibition in non-drought 
years (blue). Dataset for 2011 convective inhibition is CFSv2 
realtime data available from 1 February onwards (Saha et al. 
2011). Dataset for historical droughts and non-droughts is the 
NOAA/ESRL/PSD 20th Century Reanalysis (Compo et al. 
2011). 
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tropospheric circulation anomalies shows that 
there were anomalously strong westerly winds 
at 850 hPa in April 2011 (Fig. 4).  Wind speeds 
during the bursts of abnormally strong 
westerlies at the end of April 2011 were more 
than twice the climatological wind speed for 
that time of year (Fig. 5 (b)). At the same time 
as the anomalous westerlies, we see an increase 
in surface temperature and dewpoint (Fig. 5(a)), 
negative relative vorticity (Fig.5(c)) and 
increases in 500 hPa height (Fig. 5(d)) implying 
that the westerlies advected temperature and 
negative vorticity eastward. The high terrain to 
the west of Texas had abnormally high surface 
temperatures in March and April, with 
anomalies reaching 5 ºK (not shown). Therefore, 
thermal advection due to increased westerly 
flow over a warmer-than normal terrain in the 
spring increased convective inhibition and 
contributed to the establishment of a 500 hPa 
height anomaly (i.e. the mid-tropospheric high 
pressure system) in late-April 2011.   

We find that the anomalous strengthening of the zonal winds at 850 hPa is a characteristic feature in the 
12 severe-to-extreme droughts experienced over Texas since 1895 that had persistent negative rainfall 
anomalies from winter through summer (Fig. 6). Results suggest that February SST anomalies in the central 
Pacific, specified by the NINO4 index, is an important driver of the low level westerly wind anomalies in 
April over Texas. 

Fig. 5  Area-averaged (for the domain of Texas) pentadal surface temperature and dewpoint and 
temperature at 700 hPa (a), pentadal zonal winds at 850 hPa in 2011 and climatology (b), pentadal 
relative vorticity anomalies (c), and pentadal 500 hPa height (d). Data are from NCEP-R1 fields with 
anomalies calculated from a 1981-2010 climatology. 

Fig. 4  Vector wind anomaly at 850 hPa in April 2011 
showing the westerly flow over Texas. Dataset used is 
NCEP-R1 with anomalies calculated from a 1981-
2010 climatology. 
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5.  Conclusion 

 La Niña induced a reduction in 
winter precipitation over Texas in 
DJF 2010/2011. This led to a 
cumulative decrease in column soil 
moisture from the winter through the 
spring of 2011 that drove increases in 
sensible heating and surface 
temperature. La Niña also induced 
the mid-tropospheric high at 500 hPa 
that set up large scale subsidence 
over Texas. Surface heating due to 
soil moisture deficits and large-scale 
subsidence increased convective 
inhibition in late-spring. The sharp 
increase in convective inhibition in 
late-April and early-May was due to 
strengthened westerlies at 850 hPa 
that advected warm and dry air 
eastward from the Mexican Plateau 
and west Texas. The finding that 
strengthened westerlies at 850 hPa in 
April in past intense drought events 
as well has implications for 
improving drought predictability. Soil moisture feedback can influence summer drought intensity when 
rainfall deficits (hence, soil moisture deficits) are established in winter/spring. This finding underscores the 
need for improved real-time monitoring of soil moisture.  

The findings reported in this summary are included in an article currently in review by PNAS-
Plus. 

References 

Compo, G. P., and Co-authors, 2011:  The Twentieth Century Reanalysis Project.  Quart. J. Royal Meteor. 
Soc., 137, 1-28. 

Kistler, R., E., and Co-authos, 2001:  The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and 
Documentation.  Bull. Amer. Met. Soc., 82, 247-267.  

Saha, S., and Co-authors, 2011: The NCEP Climate Forecast System Version 2. Submitted to J. Climate 
(http://cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf). 

Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996:  Reconstruction of historical sea 
surface temperatures using empirical orthogonal functions. J. Climate, 9, 1403-1420. 

Xie, P. P., M. Chen, and W, Shi, 2010:  CPC unified gauge based analysis of global daily precipitation. AMS 
24th Conf. on hydrology, Jan 18-21, 2010, Atlanta, GA. 

Fig. 6  Anomalous zonal wind composite for 12 severe-to-extreme 
drought years with rainfall deficits in winter through summer. 
Data are from NCEP-R1 with a 1981-2010 baseline climatology 
use in the calculation of anomalies.  
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1. Introduction 

 Preparing for future hydroclimatic 
variability benefits from an assessment of the 
duration, magnitude, and intensity (or peak 
value) for both dry and wet spells. Given that 
climatic episodes recorded by the instrumental 
record are not likely to cover the entire spectrum 
of potential future scenarios (Milly et al., 2008), 
water managers can “hedge their bets” by 
examining long (i.e., multi-century) proxy 
records of climate at seasonal to annual time 
steps (Biondi and Strachan, 2012). Until 
recently, these records were only available at 
relatively coarse spatial scales, such as the 
2.5×2.5° grid spacing of the North American 
Drought Atlas (Cook and Krusic, 2004). 
However, km-scale spatial intervals can now be 
achieved using a combination of more intense 
sampling and advanced statistical techniques. In 
particular, kriging is a geostatistical technique 
commonly used for optimal interpolation of 
environmental data (Isaaks and Srivastava, 
1989), and space-time geostatistical models can 
improve kriging estimates when long temporal 
sequences of observations exist at relatively few 
points on the landscape (Christakos, 2000).  

In the Great Basin of North America, 
ecotonal environments characterized as lower 
forest border sites are ideally suited for tree-ring 
reconstructions of hydroclimatic variability. I 
present here how space-time kriging was applied 
to a network of 22 precipitation records 
developed from single-leaf pinyon (Pinus 
monophylla) tree-ring samples in eastern Nevada, 
within the Great Basin of North America (Figure 
1). 

2.  The tree-ring network and precipitation reconstructions 

A total of 22 tree-ring sites (5 from the ITRDB dataset) in eastern Nevada distributed over 500 m of 
elevation (~1930-2430 m) and a geographical area of ~ 230 (N-S) × 155 (E-W) km were selected based on 

Fig. 1  Map of the study area, showing the Nevada-Utah 
border (heavy vertical line), county lines (gray lines) 
and names (uppercase), subwatershed boundaries 
(blue lines), distribution of single-leaf pinyon pine 
(Pinus monophylla, green areas), location of tree-ring 
sites (lowercase 3-letter codes), either new (triangles) 
or from the ITRDB database (squares), and 
hydrographic basins of interest to the Southern 
Nevada Water Authority (SNWA Flow Systems).
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their correlation with local 
precipitation data obtained from the 
PRISM 4 × 4 km database (Daly et 
al., 1994). Each site tree-ring 
chronology was computed as follows: 
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 = chronology value in year t 

= median annual index; n
t
 = number 

of samples in year t, with n
t
 ≥ 3; w = 

crossdated ring width (mm, with 

1000
th
 digit resolution) of sample i in 

year t; y = value of sample i in year t 
computed by fitting a cubic 
smoothing spline with 50% 
frequency response at a period of 
100 years to ring width series i;       
wt / yt = index value of sample i in 
year t. Site chronologies were 
obtained by fitting a cubic 
smoothing spline (Cook and Peters, 
1981) to each ring-width series to 
avoid known issues that affect other 
types of standardization functions, 
such as modified negative 
exponentials (Biondi and Qeadan, 
2008).  
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Fig. 3  Pseudo-color plot of the 22 reconstructions of October-May 
total precipitation anomalies, showing temporal patterns at annual 
resolution (y-axis). The color scale for the anomalies, divided into 
10 intervals over a 600-mm range, is displayed on the right. The 
early 1900s pluvial and the “Dust-Bowl” drought that followed it 
were highlighted with black ellipses. 
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Fig. 2  The average (black) of the 22 site reconstructions (gray) of October-May total precipitation anomalies
(mm) was smoothed with a 30-year (red), 15-year (orange), and 7.5-year (yellow) cubic spline to
highlight interannual and interdecadal patterns. 
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The period in common among all tree-ring chronologies, i.e. 1650-1976, was used to reconstruct October-
May total precipitation using the Line of Organic Correlation (LOC) method (Biondi and Strachan, 2011). 
The LOC method was used because it maintains the variability found in the instrumental record (Helsel and 
Hirsch, 2002), and is particularly well adapted to reproduce long-term features of hydroclimatic anomalies 
(Figures 2 and 3). 

Individual, annually resolved site reconstructions were then combined using spatio-temporal kriging to 
produce 327 annual maps (from 1650 to 1976) on a 12 × 12 km spacing, for a total of 315 grid nodes. I 
performed space-time estimation (Fassó and Cameletti, 2009) using public-domain software (R Development 
Core Team, 2012). Elevation was treated as a covariate in order to compute a single kriging estimate for each 
two-dimensional grid point location (rather than predict over all possible altitudes), and still take elevation 
into account. Inter-annual patterns at the km-scale were quantified by the duration, magnitude, and intensity 
(peak value) of past episodes (as done by Biondi et al., 2008). By considering how modern interannual 
variability compares to that of previous records, recent changes can be placed in a long-term context to 
estimate the likelihood of severe and sustained drought. 

3.  Space-time interpolation and drought analysis 

 Space-time variograms showed an exponential behavior up to about 200 km with no temporal 
autocorrelation, i.e. beyond the 1-year lag the spatial dependence was essentially zero. The annual mean of 
the 315 grid point estimates was used to identify wet and dry episodes. The three driest years were 1934, 
1879, and 1782, and the three wettest years were 1914, 1868, and 1726 (Figure 4). Greater spatial variability 

The 3 driest yearsThe 3 driest years

The 3 wettest yearsThe 3 wettest years

Fig. 4  Pseudo-color plots for space-time interpolated reconstructions of October-May total precipitation 
anomalies (mm). The color scale for the anomalies, divided into 12 intervals over a 190-mm range, is 
displayed on the right. The location of tree-ring chronologies (solid black circles) and 12-km grid points 
(black crosses) is also shown. 
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emerged during wet periods, whereas dry spells were more synchronous over the landscape. At the annual 
time scale, the most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by 
the late 1800s drought. The 1930s ‘Dust Bowl’ drought was in 8th position, making it a remarkable hydro-
climatic episode for at least the past few centuries. After smoothing the annual values with a 7.5-year cubic 
spline to emphasize interannual variability, the early 1900s pluvial remained the strongest episode, but the 
1930s drought became the second strongest one. Therefore, the early-1900s pluvial, a most remarkable 
episode in the last few centuries, biases the instrumental record, but water management policies in eastern 
Nevada basins could use the 1920-30's drought as a relevant worst-case scenario.  

Besides showing how regional drought severity varies across the Great Basin, these results directly 
address the needs of water managers with respect to planning for ‘worst case’ scenarios of drought duration 
and magnitude. For instance, it is possible to analyze which geographical areas and hydrographic basins are 
more likely to be impacted during the most extreme droughts, at annual or multiannual timescales AND at the 
km-spacing used by regional climate models. This approach allows water managers not only to evaluate 
drought patterns for single watersheds, but also to determine if episodes that occurred during the instrumental 
period can be used for long-term planning, thereby increasing their ability to design management practices 
aimed towards resiliency to future changes. 
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ABSTRACT 

 This study compares two approaches, dynamical and statistical downscaling, for their potential to 
improve regional seasonal forecasts for the United States (U.S.) during the cold season. In the Multi-RCM 
Ensemble Downscaling (MRED) project, seven regional climate models (RCMs) are used to dynamically 
downscale the Climate Forecast System (CFS) seasonal prediction over the conterminous U.S. out to 5 
months for the period of 1982–2003. The simulations cover December to April of next year with 10 ensemble 
members from each RCM with different initial and boundary conditions for the corresponding ensemble 
members. These dynamically downscaled forecasts of precipitation (P) and surface air temperature (T) are 
compared with statistically downscaled forecasts produced by two bias correction methods of Bias Correction 
and Spatial Disaggregation (BCSD) and Bayesian merging applied to both the CFS and RCM forecasts.  

The RCMs generate finer-scale features that are missing from CFS in terms of both climatology and 
anomaly from the long-term mean.  However, forecast skill of the downscaled P and T can vary for different 
metrics used in the cross validation. In terms of temporal anomaly correlation (AC), it is found that RCMs 
and statistical downscaling methods generally are somewhat higher than CFS, especially in the Northwest and 
North Central regions. For this skill measure, some RCMs can even outperform the multi-model ensemble or 
combined dynamical-
statistical methods. For 
skill measured by spatial 
correlation, RCMs and 
statistical downscaling also 
provide additional values 
in addition to CFS. The 
Bayesian method performs 
poorly for AC because of 
the large ensemble spread 
in the forecasts.  Using 
RMSE as the metrics (Fig. 
1), we find that a couple of 
RCMs can reduce forecast 
errors compared to CFS, 
but some RCMs have 
higher RMSE due to the 
overprediction of 
precipitation in the 
Northwest and Northern 
California. However, the 
RCMs combined with 

Fig. 1 Root Mean Squared Error (RMSE) of Surface air temperature (a and c) 
and precipitation (b and d) averaged over the contiguous U.S.  RMSE of all 
the regional climate models are in the top panels (a and b) and statical 
downscaling methods in the bottom (c and d). Y axis in the left column (a 
and c) is deg C and that in the right column (b and d) is in mm/day. 
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statistical bias correction stand out clearly. At the first-month lead, simple BCSD of all seven RCMs do 
surprisingly well. At the longer leads, the Bayesian merging applied to either CFS or RCMs does a good job. 
Improvement of forecast skill can be found over the mountainous regions, especially the western U.S. during 
the winter season. 

This work has been published in J. Geophys. Res in 2012.  
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1. Introduction 

Recently, Wang et al. (2012) found that the boreal winter sea surface temperature anomalies (SSTA) in 
the western North Pacific (WNP) are strongly correlated to the development of the El Niño-Southern 
Oscillation (ENSO) by the following winter. Wang et al. (2012) defined the WNP index in two ways: (1) 
more simply by using de-trended SSTA averaged from 122°–132°E to 18°–28°N (a white box in Figure 1a) or 
(2) the second leading Maximum Covariance Analysis (MCA) of SSTA and 10m wind anomalies in the 
western Pacific from 90°E-170°W to 10°S-30°N (Figure 1a). In this study, the WNP will refer to the 
combined pattern of anomalous SST and winds, which is analogous to the Pacific Meridional Mode (PMM) 
located in the eastern half of the North Pacific. Both the PMM and WNP are linked to an SSTA dipole with 
significant anomalies off the equator in the Northern Hemisphere subtropics with opposing SSTAs located in 
the deep tropics. The PMM and WNP are thought to be linked to the “Seasonal Footprinting Mechanism 
(SFM)” (Vimont et al. 2003a,b; Alexander et al. 2010), when the atmospheric circulation over the 
extratropical North Pacific during the boreal winter (linked to the North Pacific Oscillation/NPO) establishes 
an SSTA pattern that persists through the following year and eventually influences ENSO. Wang et al. (2012) 
suggested that the location of the WNP SSTA dipole and associated wind anomalies (Figure 1a) may exert a 
more direct influence than the PMM on the degree of oceanic Kelvin wave activity preceding ENSO events 
(McPhaden 2004; Roundy and Kiladis 2007). 

Here we report new observational and modeling evidence that, since the mid-20th century, there is a 
growing association between the WNP and the development of ENSO by the following year. The stronger 
relationship between the WNP and ENSO appears to be linked to increased greenhouse gas (GHG) in the 
atmosphere, and it may reflect the energetic west-to-east development of ENSO in recent decades (Wang and 
An 2002; Guan and Nigam 2008). Furthermore, a greater link between the WNP and ENSO one year later 
provides a plausible pathway by which anthropogenic climate change may influence ENSO and perhaps 
provide greater predictive skill in seasonal ENSO outlooks. 

2.  Data sources 

 To mitigate potential errors in historical SST data and reanalysis methods, three monthly SST datasets 
are utilized: (1) the Hadley Centre SST (HadISST) (Rayner et al. 2003), (2) the NOAA Extended 
Reconstructed SST (ERSST) Version 3b (Smith et al. 2008), and (3) the Kaplan long-term SST anomalies 
(Kaplan et al. 1998). Atmospheric winds are obtained from the NCEP/NCAR Global Reanalysis (NCEP1) 
that begins in 1948 (Kalnay et al. 1996). In addition, to examine the long-term changes in the WNP and 
ENSO, historical simulations with the Community Earth System Model version 1 (CESM1) are analyzed. 
Deser et al. (2011) showed the Community Climate System Model (CCSM4) – predecessor of the CESM1 
but sharing the same ocean model – demonstrates significantly improved ENSO variability. This study uses 
three CMIP5 sets of historical single-forcing experiments that are driven by (a) greenhouse gas forcing only 
(GHG), (b) aerosol forcing only (Aerosol), and (c) natural forcing only including solar and volcano (Natural). 
Each experiment produced a two-member ensemble initialized from long-stable preindustrial (1850) control 
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runs up to 2005. In addition, we 
utilize a 350-year fully coupled 
CESM1 simulation without any 
external forcings. This long-term 
control simulation is useful to depict 
the natural variability of the WNP 
and ENSO.   

3. Results  

a.  Strengthening of the WNP (DJF) 
and ENSO (DJF+1yr) 
association 

Throughout this analysis, the 
WNP index is based on the second 
leading MCA mode of the western 
North Pacific SSTA and anomalous 
surface winds, but the major 
findings are also reproduced using 
an index of the box average SSTA. 
In order to align with above-average 
anomalies associated with the WNP 
box average, the positive phase of 
the MCA/WNP is defined by the 
anomalous pattern of SST and 
winds shown in Figure 1a. Figure 1b 
shows the 25-year sliding 
correlation between the WNP index 
during boreal winter (December-
February, DJF) and the Niño-3.4 
index (average SSTA for 170°-
120°W, 5°S-5°N) during the 
following winter (DJF+1yr). The x-
axis corresponds to the final year of 
the correlation window. A strong 
increase in correlations between the 
WNP and ENSO (DJF+1yr) is 
evident among all three SST 
datasets (Figure 1b). Here, the WNP 
and Niño-3.4 indices are linearly de-
trended within each 25-year moving 
window in order to examine the 
interannual correlations between the 
WNP and ENSO irrespective of 
multi-decadal or longer trends. We 
note that either removing a single, 
fixed trend over the entire analysis 
period or keeping the trend results in 
similar increases in the correlation 
with a difference less than 0.1 (not 
shown). This increase is particularly 
robust for moving windows that 
begin with 1960 as the initial year. 

Fig. 1  (a) MCA-2 of WNP SSTA and surface wind anomalies in DJF, 
adopted from Wang et al. (2012).  The PC time series of MCA2 is 
used as the WNP index.  Outlined areas represent an alternative 
WNP index domain and the Niño-3.4 index domain.  (b) 25-year 
sliding correlations betwenn the WNP (DJF) and Niño-3.4 
(DJF+1yr) indices using three SST datasets.  Years on the x-axis 
represent the final year of the 25-year sliding window.  The top of 
gray area indicates the 99% significance level.  (c) Same as (b) but 
for the three CESM1 experiments. 
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The correlation has increased to as high as 0.7 in the most recent part of the record. This result is robust 
regardless of the length of the sliding windows (not shown).  

Figure 2a shows one-point correlation maps between SSTA and the WNP index at lead times of zero-year 
(left) and one-year (right), using HadISST data for the period 1958-2010 (Wang et al. 2012). The WNP index 
is inverted, so the map can be interpreted as the negative WNP phase that precedes El Niño. During DJF, 
strong correlations are evident along the East Asian coastline and along the Kuroshio Extension. In the 
following winter (DJF+1yr), the WNP is related to a significant basin-wide El Niño SSTA pattern.  

The WNP-ENSO association is examined using CESM1 simulations forced by the GHG, Natural, and 
Aerosol forcings to understand the role of external forcings (Figures 2b-2d). The correlations between the 
WNP and SSTA based on the forcing experiments for DJF (left) and DJF+1yr (right) during 1958-2005 bear a 
strong resemblance with the observations. Key aspects of the WNP relationship with SSTA are broadly 
reproduced, with the exception of opposing correlations in the eastern Indian Ocean. Furthermore, Figure 1c 
shows 25-year sliding correlations between de-trended values of the WNP (DJF) and Niño-3.4 indices one 
year later (DJF+1yr) for the three CESM1 single forcing experiments. A considerable amount of decadal 
variability of the correlation between the WNP and ENSO is observed among the forcing experiments. While 
the Aerosol and Natural forcing experiments show significant correlations between the WNP and ENSO for 
periods between ~1940/50 through 1960/70, only the GHG forcing provides evidence for strong increase in 

(a) Obs (HadISST) 

99% Significance 

(b) CESM1 (GHG) 

SST Correla on with inverted WNP (DJF) 

(c) CESM1 (Natural) 

(d) CESM1 (Aerosol) 

yr 

yr 

yr 

yr 

Fig. 2  (a) Corelation maps of SSTA with the inverted WNP index for zero-lead DJF (left) and one-year 
lead, DJF+1yr (right) using the HadISST and NCEP1 data for the period 1958-2010.  All variables are 
detrended.  The Niño-3.4 area is outlined.  Dotted values are significance at the 99% level per a t-test.  
(b)-(d) Same as (a) but for the CESM1 simulations from the GHG, Natural, and Aerosol forcing 
experiments for the period 1958-2005. 
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the correlations that begins during 
~1950-1970 and continues through 
the present. The GHG-only 
experiment indicates correlations as 
strong as ~0.9 between the WNP 
(DJF) and ENSO (DJF+1yr) in the 
recent decade while the Natural-
only experiment indicates an 
insignificant relationship. Because 
these experiments are free runs, the 
specific years among the model 
experiments cannot be directed 
compared. Thus, the only robust 
comparison in Figure 1c is that 
neither the Aerosol-only run nor the 
Natural-only run produces a 
sustained period of significant 
correlations as large, or for long, as 
the GHG-only experiment. 

b. Shifts in the strongest SST trends 
and the WNP (DJF) - ENSO 
(DJF+1yr) association 

To better understand why the 
de-trended, interannual relationship 
between the WNP (DJF) and ENSO 
(DJF+1yr) has increased, we split 
the dataset into two halves: 1950-
1979 and 1980-2008. The year 1950 
is chosen as a starting point due to 
greater reliability in the observed 
datasets over the tropical Pacific 
after that time (Bunge and Clarke 
2009; L’Heureux et al. 2012). To 
further suppress sampling errors, 
two SST datasets (HadISST and 
ERSST) are averaged together. 
Figures 3a and 3b show the SSTA 
correlations and the low-level wind 
regressions in DJF with the DJF+1yr Niño-3.4 index (the length of the vectors are weighted by the 
correlation). Comparing the two halves, the most striking and pronouced change in the recent era is the 
stronger regression/correlation between ENSO (DJF+1yr) and the previous DJF low-level wind anomalies 
curling southward and then eastward in the western equatorial Pacific just north of Papua New Guinea. Also 
evident is a stronger out-of-phase SSTA correlation between the subtropical western North Pacific and 
western equatorial Pacific (~160°E-180°). This result mirrors the inverse of Figure 1a and strongly implies 
that one of the canonical initiating mechanisms for ENSO onset has become more active recently: namely, the 
generation of oceanic Kelvin waves by wind stress anomalies over the western equatorial Pacific.  

Given that low-level wind anomalies in the western equatorial Pacific are optimally situated to influence 
the generation of oceanic Kelvin waves that affect the development of ENSO, we show in Figures 3c and 3d 
the CESM1 25-year sliding correlations of the de-trended surface zonal wind stress averaged for 120°-170°E, 
5°S-10°N (τU) with the de-trended Niño-3.4 (DJF+1yr) and WNP (DJF), respectively. Among all the forcings, 
only the GHG-only forcing illustrates the pronounced upward correlation of low-level wind stress in the 

Fig. 3  Correlation map of DJF SSTA (shadings) and regression of 
surface winds weighted by the correlation (vector length) against 
the DJF+1yr Niño-3.4 index during the periods of (a) 1951-1979 
and (b) 1980-2008, using the NCP1 wind and averaged HadISST-
ERSST data.  The plotted values exceed significance at the 95% 
level.  (c) Similar to the 25-year sliding correction in Fig. 1b and 
1c, but for the DJF surface wind stress (τU) (averaged in the yellow 

box in a, b) and the DJF+1yr Niño-3.4 index from the three 
CESM1 experiments.  (d) Same as (c) except for correlations 
between τU and the inverted DJF WNP index. 
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equatorial western Pacific and the WNP 
with ENSO beginning in the mid-20th 
century. The increased correlations of the 
low-level winds provide more evidence 
for a GHG-driven increasing relationship 
between the WNP and ENSO 
development by the following year. 

c. The changing ENSO precursor pattern 

Why are there stronger correlations of 
the low-level winds in the western tropical 
Pacific and the WNP (DJF) with ENSO 
(DJF+1yr) index in the recent decades? To 
further examine the extent of which the 
low-level wind fields may change the 
ENSO-WNP link, Figure 4 presents 
composites of DJF SSTA and winds one 
year prior to El Niño in (a) and La Niña in 
(b), using a ±0.5°C threshold in the DJF 
Niño-3.4 index. The composite 
differences between the two eras, which 
are not de-trended, emphasize the change 
in the preceding SSTA and winds from the 
earlier period to the most recent period. 
The bottom panel is the difference 
between the top (a) and middle (b) panels 
and demonstrates how the differences 
between El Niño and La Niña 
preconditions are changed in the recent era 
and, as expected, largely replicate the 
ENSO correlations shown in Figure 3b. Unlike the correlations in Figure 3, this composite stratification 
allows for an examination of how the precursor SSTs have changed for El Niño and for La Niña separately. 
Interestingly, a comparison between Figures 4a and 4b reveals that positive SST trends east of Taiwan/south 
of Japan are greater prior to La Niña whereas these positive trends are relatively muted prior to El Niño. On 
the equatorial Western Pacific, positive SST trends are stronger prior to El Niño (~160°E-180) relative to 
those prior to La Niña. The differences (Figure 4c) mirror the correlations (Figure 3b) with both depicting a 
SSTA dipole and strong curvature of the winds connecting the subtropical WNP to the equator. Thus, it 
appears SST trends prior to ENSO events have changed location with relatively greater amplitudes collocated 
with the positive anomalies in the WNP dipole. This sharpening of the positive SST anomalies appears to 
arise in a strengthened WNP-ENSO relationship in the interannual timescales. However, why the GHG-
associated SST trends vary between El Niño and La Niña in a manner that more strongly amplifies the above-
average regions of the WNP dipole is unclear. 

4.  Summary 

 While the WNP index is significantly correlated to the development of ENSO by the following winter, 
the analysis presented here further suggests that this relationship between the WNP and ENSO has 
significantly increased since the mid-20th century. The stronger WNP-ENSO association occurs on 
interannual timescales based upon de-trended data, so is not the direct result of the SST warming trends. 
CESM1 single forcing experiments suggest that the increased relationship is forced by increasing GHG in the 
atmosphere. The recent era is characterized by strengthening of the low-level wind anomalies in the equatorial 
western Pacific one year prior to ENSO, and an AMIP-style run implies this strengthening is due to shifts in 
the location of positive SST trends relative to El Niño or La Niña (one year previously). Prior to El Niño, the 

Fig. 4  Composite differences of SSTA (shading) and surface 
wind (vector) prior to (a) El Niño (DJF-1yr) and (b) La Niña 
(DJF-1yr) between the two eras of 1951-1979 and 1980-
2008.  (c) Differences between (a) and (b).  The wind fields 
are averaged from 20CR and NCEP1 while the SSTA fields 
are averaged from HadlSST and ERSST. 
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region of positive SST trends occurs near the typical region of above-average SSTA in the western equatorial 
Pacific, whereas prior to La Niña, positive SST trends reinforce the above-average SSTA near southeastern 
Asia. 

It is hypothesized that this shift in SST trends, which sharpens and amplifies the above-average SST 
region of the WNP dipole, arises in a strengthening WNP-ENSO relationship on interannual timescales. 
Analysis of the 350-year CESM1 preindustrial control simulation reveals that fluctuations in the leading 
North Pacific SSTA pattern of multi-decadal (30-year) variability mirror the variability in the correlations 
between the WNP and ENSO. While the control simulation only reflects coupled climate variability without 
external forcings, CESM1 suggests anthropogenic forcings, particularly GHG, have facilitated and even 
accelerated such a WNP-ENSO relationship. In recent decades, both the GHG-forcing experiment and the 
observations indicate unprecedented correlations closer to 0.7-0.9 between WNP and ENSO the following 
winter. 

These results provide an important example of how lower frequency changes, like anthropogenic climate 
change, can directly impact intraseasonal-to-interannual climate variations. Provided that prediction tools can 
adequately capture the WNP-ENSO connection, if GHG are increasing the WNP-ENSO relationship then this 
may suggest potentially more skillful ENSO forecasts at one-year lead and increased confidence in seasonal 
predictions during the decades to come. 
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ABSTRACT 

In this paper an interdecadal shift in the 
variability and mean state in the tropical Pacific 
Ocean is investigated in the context of changes in the 
El Niño–Southern Oscillation (ENSO). Compared 
with 1979-1999, the interannual variability in the 
tropical Pacific was significantly weaker in 2000-
2011, and this shift can be seen as coherent changes 
in both the atmospheric and oceanic mean state and 
variability (Fig. 1). For example, the equatorial 
thermocline tilt became steeper during 2000-2011, 
which was consistent with positive (negative) sea 
surface temperature anomalies, increased (decreased) 
precipitation, and enhanced (suppressed) convection 
in the western (central and eastern) tropical Pacific, 
which reflected an intensification of the Walker 
circulation. We propose that the combination of a 
steeper thermocline slope with stronger surface trade 
winds has hampered the zonal migration of the warm 
water along the equatorial Pacific. As a consequence, 
the variability of the warm water volume was 
reduced and thus ENSO variability also decreased. 
Through Zebiak-Cane model experiments, it is 
preliminarily confirmed that both too large and too 
small thermocline slopes (and too strong and too 
weak wind stress) can potentially lead to the 
suppression in ENSO variability. 

This work has been published in Journal of 
Climate in 2012. 
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Fig. 1  Variance differences of (a) ERSSTv3b SST, (b) 
CAMS_OPI precipitation, (c) OLR, and (d) D20 
between the means in Jan 2000-Dec 2011 and in 
Jan 1979-Dec 1999. The units are (oC)2 in (a), 
(mm/day)2 in (b), (W/m2)2 in (c), and m2 in (d). 
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Web-Based Reanalysis Intercomparison Tools (WRIT) to Allow Easy 
Analysis and Comparison of Reanalyses and Other Datasets  

Catherine A. Smith, Gilbert P. Compo, and Don K. Hooper 

Cooperative Institute for Research in Environmental Sciences, University of Colorado, 
and NOAA/Earth System Research Laboratory, Boulder, Colorado 

1. Motivation 

 There are currently at least 8 major reanalysis datasets available for scientists to study.  Each dataset uses 
a different model, diferent observations and different assimilation algorithms. Comparing the reanalysis fields 
to each other and to observations may yield insights into climate processes. A host of issues make this 
difficult.  The reanalysis data are available from different organizations, are stored in different formats with 
different file name architecture, have differing resolutions, file attributes, variable names, and units.  
Generally speaking, users have to download the data, convert it to a useable format, store it locally, change 
variable names, re-grid if needed, convert units and write code general enough that applications such as NCL, 
GrADS, IDL,  or others can be used to read each dataset and compare the desired variables. Even if the 
dataset can be read via OPEnDAP or a similar remote protocol, most of this work is still needed. All of these 
tasks take time, effort and money. Our group at PSD has expertise both in storing and making reanalysis 
datasets available and in creating web-based climate analysis tools that have been widely used throughout the 
meteorological community. To overcome some of the obstacles in reanalysis inter-comparison, we have 
created a web-based reanalysis inter-comparison tool (WRIT), which allows users to easily plot and compare 
reanalysis datasets. Users may still want to download and analyze data but by using the page, they can test 
hypotheses and create basic plots to both narrow down scientific questions and have basic results.  WRIT also 
facilitates the mission of the Reanalyses Intercomparison and Observations web-site (http://reanalyses.org) as 
a convenient toolkit for the study of these datasets. 

2. Project overview 

The reanalyses datasets we chose to make available now are the NCEP/NCAR Reanalysis I (Kalnay et al. 
1996), NCEP/DOE Reanalysis 2 (Kanamitsu et al. 2002), ECMWF Interim Reanalysis (Dee et al. 2011), 
NASA Modern Era Reanalysis for Research and Applications (MERRA) (Rienecker et al. 2011), NCEP 
Climate Forecast System Reanalysis 
(CFSR) (Saha et al. 2010), and the 
NOAA-CIRES 20th Century Reanalysis 
V2 (20CR) (Compo et al. 2011) with 
more to be added later. Basic attributes 
are given in Table 1. The earliest 
reanalysis starts in 1871 and some are 
available near present. We have these 
pressure level variables: geopotential 
height, zonal and meridional winds, 
omega, air temperature, relative 
humidity and specific humidity. Each 
dataset outputs on different pressure 
levels but they generally start at 1000mb 
and go up as high as 1mb. We have a 
common set of levels available for all 
datasets that we use when making cross-

Reanalysis Year Range at PSD 
Levels/Output 
Resolution at PSD* 

NCEP/NCAR R1 1948‐present 17/2.5x2.5 

NCEP/DOE R2 1979‐Jun 2012 17/2.5x2.5 

MERRA 1979‐2012 31/1.25x1.25 

20
th

 Century  1871‐2010 24/2.0x2.0 

ERA Interim 1979‐2011 30/1.5x1.5 

NCEP CFSR 1979‐Mar 2011 37/2.5x2.5 

Table 1 Characteristics of the Reanalysis datasets as stored at
NOAA/ESRL PSD. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

124 

section comparisons. Single level variables include 2m air temperature, 10m zonal and meridional winds, sea 
level pressure and precipitation rate. For comparison with observations, we also have available the U of 
Delaware V3.01 (Willmott and Matsuura 1995) land air temperature and precipitation dataset, NOAA’s 
GHCN_CAMS air temperature (Fan and van den Dool 2008), NOAA/NASA global precipitation analysis 
(GPCP) (Adler et al. 2003), Climatic Research Unit (CRU) air temperature (Mitchell and Jones 2005) and the 
NOAA precipitation analyses (Chen et al. 2002) over land. These datasets can be directly compared with 2m 
air temperature and precipitation from reanalyses.  Comments and suggestions can be made at reanalysis.org. 
Additionally, user plots can be posted there.   

Initially, we have developed three web tools. These are available from the URL 
http://esrl.noaa.gov.psd/writ/ and include 

1. Monthly/Seasonal plotting page: Plots composites and differences from the datasets including maps 
and vertical cross-sections 

2. Monthly Timeseries: 

3. Trajectory Plotting Tool: 

We plan to add more tools later including shorter time-scales and more analyses types. 

 

Fig. 1  Web Page Interface for Monthly Map Page showing user options. 

3. Code development 

 The web tools are coded similarly. All use HTML web forms that have all necessary options available. 
The form variables are sent to a Perl program that reads in and validates the options. The Perl program also 
returns the locations of the data files needed from each dataset. They also create the temporary files needed 
for the web and pass along the variables needed for analysis and for plotting. We use NCL for both the 
monthly plotting and the time-series pages. NCL reads in files easily and has many built-in routines for 
meteorological processing (such as creating climatologies or calculating area averages). The code performs 
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the necessary analysis. This includes 
taking into account the differing grids 
and grid resolutions, attributes, levels, 
etc. When necessary, plots or cross-
sections are interpolated to the same grid, 
converting from low to higher resolution. 
The Perl routine processes the results 
from the NCL script and also generates 
KML/Google Earth for the monthly 
plotting page.  

4.  Features highlight 

a)  First page: Monthly Plotting Page 

The interface, shown in Fig. 1, 
allows users to select one or two datasets, 
the level(s), the type of plot (map, 
latitude/height or longitude/height), the 
statistic (mean, anomaly, long term 
mean) and plotting options. They can 
also select a season and one or more years (for example, creating an El Nino composite). If two datasets are 
chosen, each grid or cross-section is calculated and then the resulting output differenced. Results are returned 
as images, NetCDF files and KML. Shown in Fig. 2 is a map of the difference between the NCEP/NCAR R1 
and the U of Delaware 2m air temperatures for composite wintertime El Niño’s.  Fig. 3 shows the difference 
between zonally averaged winds for the 20CR dataset for 1970-1979 compared to 1990-1999.  

b) Second page: Time Series Differences       

The interface for this page (not shown) is similar to 
the one used in the mapping page. The reanalysis datasets 
are the same as the mapping page but has just one 
observed dataset (more will be added). Selections include 
dataset, one or two variables/levels, area for 1st dataset, 
area for 2nd dataset, season, type of statistic and type of 
output plot. The types include two timeseries plots (same 
or different axis), difference of two timeseries, scatter 
plots, auto or cross correlation and distribution. Statistics 
from each plot (mean, median, standard deviation) are 
returned. Also returned is the correlation between two 
timeseries and the actual grid bounds used in each dataset 
(as grids differ for the different reanalyses). Shown in Fig. 
4 is the difference of precipitation in the eastern tropical 
Pacific (4ºN-4ºS, 120ºE-160ºE) between the NCEP/NCAR 
R1 and the GPCP V2 dataset. Fig. 5 shows a scatter plot of 
20CR vs. ERA-Interim zonally averaged 2 m air 
temperature south of 70ºS. 

c)  Third page: Trajectory Tool 

Finally, we have created a trajectory plotting tool that 
uses the three different reanalysis datasets in which we 
have 4-times daily data available: NCEP/NCAR R1, 
NCEP/DOE R2 and the 20CR. Users can select a start/end 
time, an initial level and location and plot the trajectory 
based on the 3-D winds from the reanalyses. The trajectory 

Fig. 3  Plot produced from the WRIT Monthly 
Mapping Page, showing the cross-section 
of January zonal mean of zonal wind 
difference between 1970-1979 and 1990-
1999 for the 20CR. 

Fig. 2  Difference between the NCEP/NCAR R1 and the U of 
Delaware 2m air temperatures for January El Niño 
composite.
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can be forward or backward. The trajectory code was 
obtained from the U of Australia in Melbourne courtesy 
of Ian Simmonds. It is based on 3-D advective model that 
is solved using a 4th order Runge-Kutta scheme. The 
trajectory is calculated using a time step of 1 hour and the 
results plotted on a map and are available as KML and in 
a Google Earth Web plugin.  Plotted in Fig. 6 is a 
trajectory for the 20CR dataset for wintertime (October 28 
1991; the so-called “Perfect storm”) for the starting 
location 48ºN; 310ºE. Also plotted is the pressure level at 
each trajectory point. Users can download the NetCDF 
files containing the trajectory points.  

5. Summary/discussions and future works 

a) More features 

We plan to add more observational datasets to the 
mapping and time series webpage. We also hope to add 
one or more reanalyses datasets to the trajectory tool. 
Features we plan to add to the mapping page include more 
observational datasets, the ability to obtain dates to 
composite with from a user supplied date file or from a 
climate index (e.g. highest PNA months). For time series, 
we will add climate indices as well as user files input via 
FTP. We may also look at fitting distributions. We may add additional plots such as whisker plots.  Users can 
leave comments and suggestions at http://reanalyses.org/atmosphere/web-based-reanalysis-intercomparison-
tools-writ 

b) Other issues 

 We started the project by attempting to use files via OPEnDAP. While we have many datasets at PSD, 
we cannot store all of them as we hoped that by being able to access datasets remotely, we could make 
available more datasets and variables. This was only partially successful. While we could read our own data 
via OPEnDAP easily, other datasets took too long depending on how their server was set up. In addition, we 

Fig. 4  Plot is produced from the WRIT Time-Series Page, showing a comparison between the NCEP/NCAR 
R1 precipitation and that of the GPCP observational dataset over the eastern Tropical Pacific. 

Fig. 5  Scatter plot produced from the WRIT 
Monthly Time-Series Webpage showing 
2m air temperature for July over Boulder, 
CO (40ºN; 255ºE) for the 20CR dataset vs. 
the ERA-Interim dataset. 
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had to rely on the metadata supplied at the source. In 
some cases the metadata was lacking, hard to use 
and/or in error. The metadata issues are likely 
addressable but access time remains an unresolved 
issue.   

References 

Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. 
Xie, J. Janowiak, B. Rudolf, U. Schneider, S. 
Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. 
Arkin, 2003: The Version 2 Global Precipitation 
Climatology Project (GPCP) Monthly 
Precipitation Analysis (1979-Present).  J. 
Hydrometeor., 4, 1147-1167. 

Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 
2002: Global Land Precipitation: A 50-yr Monthly 
Analysis Based on Gauge Observations.  J. of 
Hydrometeor., 3, 249-266.  

Compo, G.P., J.S. Whitaker, P.D. Sardeshmukh, N. 
Matsui, R.J. Allan, X. Yin, B.E. Gleason, R.S. 
Vose, G. Rutledge, P. Bessemoulin, S. 
Brönnimann, M. Brunet, R.I. Crouthamel, A.N. 
Grant, P.Y. Groisman, P.D. Jones, M. Kruk, A.C. Kruger, G.J. Marshall, M. Maugeri, H.Y. Mok, Ø. 
Nordli, T.F. Ross, R.M. Trigo, X.L. Wang, S.D. Woodruff, and S.J. Worley, 2011: The Twentieth 
Century Reanalysis Project.  Quart. J. Roy. Meteorol. Soc., 137, 1-28.  doi: 10.1002/qj.776  

Dee, D. P., and Co-authors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data 
assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553-597.  doi 10.1002/qj.828.  

Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948-present. 
J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.  

Kalnay, E., and Co-authors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 
437-470. 

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–
DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643. doi:10.1175/BAMS-83-11-
1631. 

Mitchell, T.D., and P.D. Jones, 2005: An improved method of constructing a database of monthly climate 
observations and associated high-resolution grids.  Int. J. Climatol., 25, 693-712.  doi: 10.1002/joc.1181. 

Rienecker, M.M., and Co-authors, 2011: MERRA - NASA's Modern-Era Retrospective Analysis for Research 
and Applications. J. Climate, 24, 3624-3648.  doi: 10.1175/JCLI-D-11-00015.1.  

Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 
1015–1057.  doi: 10.1175/2010BAMS3001.1 . 

Willmott, C. J. and K. Matsuura, 1995:  Smart interpolation of annually averaged air temperature in the 
United States. J. Appl. Meteor., 34, 2577-2586. 

 

Fig. 6  Trajectory plot made from the WRIT 
Trajectory Webpage showing the forward 
trajectory of a point started at 850mb, 48ºN, 
210ºE on 0Z Oct 28 1991 using the NCEP/DOE 
Reanalysis 2 dataset. 
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Understanding and provision of integrated environmental information is one of the top priorities in the 
new Weather-Ready Nation strategy recently introduced by the National Weather Service (NWS) at the US 
National Oceanic and Atmospheric Administration (NOAA). The ability to identify and predict local climate 
impacts on weather and water is critical because most climate-sensitive decisions occur at the local level such 
as cities, counties and states. 

Climate serves as a driving force in the frequency of extreme weather and water events. Public warnings 
on the occurrence of climate events and their possible impacts, such as fresh water shortages in the Pacific 
Islands during El Niño events, provide actionable information to help build communities’ resilience to 
weather and water elements. Efficient local service is a key component for the effective dissemination of 
climate information. The NWS is presently working towards developing a local climate analysis tool (LCAT) 
to enable office staff and technical users to access, manipulate, and interpret climate data, and characterize 
climate variability and change linkages to weather and water elements. 

To ensure the relevance of the tool to end users, the LCAT Integrated Working Team identifies 
requirements and sets priorities for development. LCAT’s capabilities are being developed to respond to the 
needs of NOAA staff providing operational climate services, as well as those of external technical users 
making climate-sensitive decisions. External technical user groups include: 

• Natural resource managers (such as hydrologists, planning and operational engineers of water reservoirs 
and energy turbines using water, nuclear, wind, and solar sources of power generation)  

• Wildlife managers including fisheries, national parks, and marine sanctuaries 

• Researchers working on climate information applications for national security including agriculture, 
environment, transportation and military matters. 

The LCAT Integrated Working Team is using different ways to identify requirements, including literature 
surveys, reviews of user logs maintained by NWS local offices, and direct engagement with users, such as 
through the Annual Climate Prediction Application Science Workshop1. 

The enabling role of LCAT 

LCAT is an online interactive tool that will enable local users to conduct regional and local climate 
studies using state-of-the-art station and reanalysis gridded data and various statistical techniques. LCAT uses 
the principles of artificial intelligence to respond to queries, in particular, through use of machine technology 
that responds intelligently to input from users (Figure 1). The user translates customer questions into primary 
variables and issues, and LCAT pulls the most relevant data and analysis techniques to provide information 
back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, 
which includes providing statistics, graphical displays of information, and translations for users, metadata, 
and a summary of the user request to LCAT. The results are used to provide services to guide local decision 
makers in weather- and climate- sensitive actions and to deliver information to the general public. LCAT 

                                                 
1 http://www.nws.noaa.gov/om/csd/index.php?section=meetings 
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augments current climate reference materials with relevant regional and local information. Its main emphasis 
is to enable studies of extreme meteorological and hydrological events such as tornadoes, floods, droughts 
and severe storms. LCAT will close a very critical gap in NWS local climate services because it provides 
analysis of climate variables beyond average temperature and total precipitation. NWS external partners and 
government agencies will benefit by incorporating LCAT’s output easily into their own analysis and delivery 
systems.  

Present and near-term capabilities 

NWS has identified five existing requirements for local climate information:  

• Local impacts of climate change (Figure 2) 

• Local impacts of climate variability 

• Drought severity studies 

• Climate studies for water resources 

• Diagnostics of extreme meteorological and hydrological events. 

The methodologies for the first four requirements have been included in LCAT phase one implementation. 

The local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of 
three trend techniques: hinge, optimal climate normals (running mean for optimal time periods), and the 
exponentially-weighted moving average (Figure 2). 

Root mean squared error is used to determine the best trend fit to observations with the least error. 
Analysis of ensemble information allows assessment of mean climatological data and uncertainty due to the 
trend fitting techniques. 

Fig. 1  LCAT mimics human abilities to listen, think, reach out for information, and respond multiple users’ 
inquiries at the same time. 
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Studies of the impacts of climate variability on local extremes use compositing techniques applied to 
various definitions of local variables, from specified percentiles to critical thresholds. Drought studies 
combine the visual capabilities of Google maps with statistical estimates of drought severity indices. 

Climate studies for water 
resources applications include:  

• Current and expected 
maps of water resources 
(Figure 3) 

• Site-speci5fic, interactive 
information on forecast 
ensemble distribution for 
water resources and their 
expected evolution 

• Historical analogues of 
present and expected 
river flow 

• The relationship between 
water parameters and 
climate variability indices 

NWS is leveraging internal 
and external NOAA 
partnerships to develop 
methodologies for the 
requirement on the attribution of 
extreme meteorological and 
hydrological events. This 
section of LCAT will include 
references to explain the 
climatological drivers for 
extreme events such as the 2010 
heat wave and drought in Russia, 
the 2011 Missouri River flood 
and the unusually warm March 
in the eastern USA in 2012. 

The near-term development 
plan includes the incorporation 
of various climate variability 
indices such as North Atlantic, 
Arctic, Madden Julian, Pacific 
Decadal and other oscillations 
with documented impacts of 
weather and water parameters. 
In addition, LCAT will have 
access to NOAA’s severe 
weather data sets, which will 
enable climatological and 
impact studies of frequencies in 
tornados (Figure 4), floods, 
snowstorms, heat waves, 

Fig. 2  LCAT options for climate change local studies include fitting 
different trends to the local climate time series, computation of rate of 
change (1.7⁰C per 30-year period), and de-trended time series for 
further studies of climate variability impacts. 

Fig. 3  LCAT section on Climate Studies for Water Resources Applications 
is currently developing as a stand-alone feature with future 
incorporation into LCAT framework. 
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lightning and other extreme events. For example, a pilot 
study analyzed the relationship between tornados and El 
Niño Southern Oscillation (ENSO) events, helping to 
identify areas with significant tornados and an enhanced 
number of tornado days during La Niña events in the 
central USA region. The plan also includes developing 
numerous options for user-defined climate analysis, such 
as tuning to strong climate events using multiple indices 
of climate variability and critical percentiles of data 
distributions.  

Future goals and applications 

Future plans for LCAT include building the capability 
to extend it to existing data visualization tools and adding 
options for three-dimensional and multiple-site graphical 
capabilities. Additionally, LCAT will be developed for 
climate studies in key environmental and economic 
sectors. For example, to support marine sanctuaries and 
coastal systems, LCAT will have access to NOAA global 
sea level, tidal and coastal surges monitoring data, which 
will enable climate studies at specific harbors or marsh 
habitats. To support renewable energy decisions, LCAT 
will use global surface observation, satellite and reanalysis 
wind, cloud cover, and solar insulation data to allow the 
analysis of local climatology at different heights of the atmosphere anywhere on Earth. Extension to 
reanalysis data will enhance LCAT global applications and enable the potential use of data from Global 
Circulation Models for model inter-comparison on regional scales. The LCAT development plan also includes 
potential access to demographic and biological data to help with holistic environmental climatological 
analysis. 

User engagement 

LCAT was beta tested by approximately 40 NOAA staff, who were eager to start local climate studies. 
Several training events took place to engage beta testers: 

• Live webinars were recorded and provided to users for further reference 

• A training workshop was held, that included instructions on using LCAT, information on data and 
methods used for analyses, practice sessions, and discussions to collect user feedback 

• Fact sheets were developed describing LCAT capabilities 

Feedback from beta testers identified new requirements to be added to the tool prior to operational 
implementation for internal use by NOAA. LCAT’s application for NOAA’s external use requires the 
engagement of users and integration of new requirements.  LCAT’s development is an iterative process of 
user engagement that includes identifying user needs, formulating requirements, and setting priorities; 
coordinating with subject matter experts on best practices for use of appropriate data and scientific methods to 
respond to these needs; building and testing new LCAT capabilities; training, and user feedback. 

This continuous development will ensure that LCAT provides the analysis tools and capabilities to meet 
the needs of a wide range of stakeholders, enabling the interpretation and dissemination of climate data to 
support climate-sensitive decisions. 

 

Fig. 4  Results of a pilot study helps to identify 
areas with significant tornados and 
enhanced numbers of tornado days during 
La Niña events in the central U.S. Orange 
polygon is the area with enhanced 
significant tornados; cyan – area with 
diminished significant tornados; red – area 
with enhanced number of tornado days. 
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ABSTRACT 

The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created 
by merging multiple sources of observed atmospheric water vapor to form a global data base of total and 
layered precipitable water vapor. Under the NASA Making Earth Science Data Records for Research 
Environments (MEaSUREs) program, NVAP has been reprocessed and extended.  The NVAP-MEaSUREs 
(NVAP-M) dataset features multiple 
production streams geared towards 
varied user needs, and biases in the 
original dataset caused by algorithm and 
input changes were removed by relying 
on peer reviewed algorithms and inputs. 
This extension increases NVAP’s 14-
year coverage to include 22 years 
(1988-2009) of data. The resulting data 
set provides new information on the 
seasonal and interannual variability of 
water vapor at both global and regional 
scales (Fig. 1). The availability of both 
total and layered precipitable water also 
allows for the study of water vapor at 
various levels of the atmosphere. 
NVAP-M continues the NVAP legacy 
wide-ranging uses, from studies of 
weather features, regional circulations, 
to assimilation into and validation of 
climate models.   

This work has been published in Geophysical Research Letters in 2012.  

Paper published 

Vonder Haar, T. H., J. L. Bytheway, and J. M. Forsythe, 2012: Weather and climate analyses using 
 improved global water vapor observations. Geophysical Research Letters, 39, L15802, 
 doi:10.1029/2012GL052094. 

Fig. 1  Seasonal and interannual variability from NVAP-M 
Climate: monthly average total precipitable water (TPW) for 
(a) January and (b) July2009.   (c) The time series of global 
monthly average TPW. 
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